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Abstract

This paper analyzes the impact of labor market competition and skill-biased technical change on

the structure of compensation. The model combines multitasking and screening, embedded into a

Hotelling-like framework. Competition for the most talented workers leads to an escalating reliance

on performance pay and other high-powered incentives, thereby shifting effort away from less easily

contractible tasks such as long-term investments, risk management and within-firm cooperation.

Under perfect competition, the resulting effi ciency loss can be much larger than that imposed by a

single firm or principal, who distorts incentives downward in order to extract rents. More generally,

as declining market frictions lead employers to compete more aggressively, the monopsonistic un-

derincentivization of low-skill agents first decreases, then gives way to a growing overincentivization

of high-skill ones. Aggregate welfare is thus hill-shaped with respect to the competitiveness of the

labor market, while inequality tends to rise monotonically. Bonus caps and income taxes can help

restore balance in agents’incentives and behavior, but may generate their own set of distortions.



1 Introduction

Recent years have seen a literal explosion of pay, both in levels and in differentials, at the top

echelons of many occupations. Large bonuses and salaries are needed, it is typically said, to retain

“talent”and “top performers”in finance, corporations, medicine, academia, as well as to incentivize

them to perform to the best of their high abilities. Paradoxically, this trend has been accompanied

by mounting revelations of poor actual performance, severe moral hazard and even outright fraud

in those same sectors. Oftentimes these behaviors impose negative spillovers on the rest of society

(e.g., bank bailouts), but even when not, the firms involved themselves ultimately suffer: large

trading losses, declines in stock value, loss of reputation and consumer goodwill, regulatory fines

and legal liabilities, or even bankruptcy.

This paper proposes a resolution of the puzzle, by showing how competition for the most

productive workers can interact with the incentive structure inside firms to undermine work ethics

—the extent to which agents “do the right thing”beyond what their material self-interest commands.

More generally, the underlying idea is that highly competitive labor markets make it diffi cult for

employers to strike the proper balance between the benefits and costs of high-powered incentives.

The result is a “bonus culture” that takes over the workplace, generating distorted decisions and

significant effi ciency losses, particularly in the long run. To make this point we develop a model

that combines multitasking, screening and imperfect competition, thus making a methodological

contribution in the process.

Inside each firm, agents perform both a task that is easily measured (sales, output, trading

profits, billable medical procedures) and one that is not and therefore involves an element of public-

goods provision (intangible investments affecting long-run value, financial or legal risk-taking, co-

operation among individuals or divisions). Agents potentially differ in their productivity for the

rewardable task and in their intrinsic willingness to provide the unrewarded one —their work ethic.

When types are observable, the standard result applies: principals set relatively low-powered in-

centives that optimally balance worker’s effort allocation; competition then only affects the size of

fixed compensation. Things change fundamentally when skill differences are unobservable, leading

firms to offer contracts designed to screen different types of workers. A single principal (monop-

sonist, collusive industry) sets the power of incentives even lower than the social optimum, so as

to extract rents from the more productive agents. Labor-market competition, however, introduces

a new role for performance pay: because it is differentially attractive to more productive workers,

it also serves as a device which firms use to attract (or retain) these types. Focusing first on the

limiting case of perfect competition, we show that the degree of incentivization is always above the

social optimum, and we identify a simple condition under which the resulting distortion exceeds

that occurring under monopsony. Competitive bidding for talent is thus destructive of work ethics,

and ultimately welfare-reducing.

We then develop a Hotelling-like variant of competitive screening to analyze the equilibrium

contracts under arbitrary degrees of imperfect competition. As mobility costs (or horizontal differ-

entiation) decline, the monopsonistic underincentivization of low-skill agents gradually decreases,
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then at some point gives way to a growing overincentivization of high-skill ones. Aggregate welfare

is thus hill-shaped with respect to competition, while comprehensive measures of inequality (gaps

in utility or total earnings) tend to rise monotonically. This leads us to analyze different policies,

such as bonus caps or taxes on total compensation, that can potentially improve effi ciency and

restore balance in agents’ incentives and focus. The extent to which this is achievable depends

on how well the government or regulator is able to distinguish the incentive versus fixed parts of

compensation packages, as well as on the distortions that may arise as firms try to blur that line

or resort to even less effi cient screening devices.

In our baseline model, one task is unobservable or noncontractible, and thus performed solely

out of intrinsic motivation. This (standard) specification of the multitask problem is convenient,

but inessential for the main results. We thus extend the analysis to the case where performance

in both tasks is measurable and hence rewarded, but noisy, which limits the power of incentives

(e.g., deferred compensation versus yearly bonuses) given to risk averse agents. This not only

demonstrates robustness (e.g., no reliance on intrinsic motivation) but also yields a new set of

results that bring to light how the distorted incentive structure under competition (or monopsony)

and the resulting misallocation of effort are shaped by the noise in each task, agents’comparative

advantage across them, and risk aversion.

Finally, we contrast our main analysis of competition for talent with the polar case where agents

have the same productivity in the measurable task but differ in their ethical motivation for the

unmeasurable one. In this case, competition is shown to be either beneficial (reducing the overin-

centivization which a monopsonist uses to extract rent, but never causing underincentivization), or

neutral —as occurs in a variant of the model where ethical motivation generates positive spillovers

inside the firm instead of private benefits for the agent.

• Related evidence. Although bankers’ bonuses and CEO pay packages attract the most atten-

tion, the parallel rise in incentive pay and earnings inequality is a much broader phenomenon,

as established by Lemieux et al. (2009). Between the late 1970’s and the 1990’s, the fraction of

jobs explicitly paid based on performance rose from 38% to 45%. Further compounding the direct

impact on inequality is the fact that the returns to skills, both observable (education, experience,

job tenure) and unobservable, are much higher in such jobs. This last finding also suggests that

different compensation structures may play an important sorting role.1 Lemieux et al. calculate

that the interaction of structural change and differential returns account for 21% of the growth in

the variance of male log-wages over the period, and for essentially 100% (or even more) above the

80th percentile.

The source of escalation in incentive pay in our model is increased competition for the best

workers, and this also fits well with the evidence on managerial compensation in advanced countries.

In a long-term study (1936-2003) of the market for top US executives, Frydman (2007) documents

1Consistent with this view and with our modelling premise that performance incentives affect not only moral
hazard (e.g. Bandiera et al. 2007, Shearer 2004) but also selection, Lazear’s (2000) study of Safelite Glass Company
found that half of the 44% productivity increase reaped when the company replaced the hourly wage system by a
piece rate was due to in- and out-selection effects.
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a major shift, starting in the 1970’s and sharply accelerating since the late 1980’s, from firm-specific

skills to more general managerial ones —e.g., from engineering degrees to MBA’s. In addition, there

has been a concomitant rise in the diversity of sectorial experiences acquired over the course of a

typical career. Frydman argues that these decreases in mobility costs have intensified competition

for managerial skills and shows that, consistent with this view, executives with higher general

(multipurpose) human capital received higher compensation and were also the most likely to switch

companies. Using panel data on the 500 largest firms in Germany over 1977-2009, Fabbri and Marin

(2011) show that domestic and (to a lesser extent) global competition for managers has contributed

significantly to the rise of executive pay in that country, particularly in the banking sector.

Our theory is based on competition not simply bidding up the level of compensation at the top,

but also significantly altering its structure toward high-powered incentives, with a resulting shift

in the mix of tasks performed toward more easily quantifiable and short-term-oriented ones. This

seems to be precisely what occurred on Wall Street as market-based compensation spread from the

emerging alternative-assets industry to the rest of the financial world:

“Talent quickly migrated from investment banks to hedge funds and private equity.

Investment banks, accustomed to attracting the most-talented executives in the world

and paying them handsomely, found themselves losing their best people (and their best

MBA recruits) to higher-paid and, for many, more interesting jobs... Observing the re-

markable compensation in alternative assets, sensing a significant business opportunity,

and having to fight for talent with this emergent industry led banks to venture into

proprietary activities in unprecedented ways. From 1998 to 2006 principal and pro-

prietary trading at major investment banks grew from below 20% of revenues to 45%.

In a 2006 Investment Dealers’Digest article... one former Morgan Stanley executive

said... that extravagant hedge fund compensation —widely envied on Wall Street, ac-

cording to many bankers—was putting upward pressure on investment banking pay, and

that some prop desks were even beginning to give traders "carry." Banks bought hedge

funds and private equity funds and launched their own funds, creating new levels of risk

within systemically important institutions and new conflicts of interest. By 2007 the

transformation of Wall Street was complete. Faced with fierce new rivals for business

and talent, investment banks turned into risk takers that compensated their best and

brightest with contracts embodying the essence of financial-markets-based compensa-

tion.”(Desai 2012, The Incentive Bubble).

Similar transformations have occurred in the medical world with the rise of for-profit hospital

chains: Gawande (2009) documents the escalation of compensation driven by the overuse of revenue-

generating tests and surgeries, with parallel declines in preventive care and coordination on cases

between specialists, increases in costs and worse patient outcomes.

• Related literature. Our paper relates to and extends several lines of work. The first one is that
on screening with exclusive contracts, initiated by Rothschild and Stiglitz’s (1976) seminal study
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of a perfectly competitive (free entry) insurance market. Croker and Snow (1985) characterize the

Pareto frontier for the two types in the Rothschild-Stiglitz model and show how it ranges from sub-

optimal insurance for the safer type (as in the original separating equilibrium) to over-insurance for

the risky type. Stewart (1994) and Chassagnon and Chiappori (1997) study perfectly competitive

insurance markets with both adverse selection and moral hazard: agents can exert risk-reducing

efforts, at some privately known cost. In equilibrium the better agents choose contracts with higher

deductibles, for which they substitute higher precautionary effort.2 ,3 Our paper extends the liter-

ature by analyzing screening in a multitask environment and by deriving the equilibrium for the

whole range of competition intensities between the polar cases of monopsony and perfect com-

petition, on which most previous work has focused. A notable exception to the latter point is

Villas-Boas and Schmidt-Mohr (1999), who study Hotelling competition between banks that screen

credit risks through costly collateral requirements. As product differentiation declines they compete

more aggressively for the most profitable borrowers, and the resulting increase in screening costs

(collateral posted) can be such that overall welfare falls. Banks’problem is one of pure adverse se-

lection, whereas in our context there is also (multidimensional) moral hazard. We thus analyze how

the structure of wage contracts, effort allocations, earnings and welfare vary with market frictions.

We characterize the socially optimal degree of competitiveness and derive the model’s predictions

for changes in total pay inequality and its performance-based component, which accord well with

the empirical evidence discussed earlier. Stantcheva (2012) studies optimal income taxation when

perfectly competitive firms use work hours to screen for workers’productivity. Welfare can then be

higher when agents’types are unknown to employers, as the need to signal talent counteracts the

Mirrleesian incentive to underproduce. The contrast in results arises from firms and the state being

able to observe labor inputs, whereas in our context only output is observable (were it measurable

in Stantcheva’s single-task model, screening would yield the first best).

From the multitasking literature we borrow and build on the idea that incentivizing easily

measurable tasks can jeopardize the provision of effort on less measurable ones (e.g. Holmström

and Milgrom 1991, Itoh 1991, Baker at al. 1994, Dewatripont et al. 1999, Fehr and Schmidt 2004).

Somewhat surprisingly, the impact of competition on the multitasking problem has not attracted

much attention —a fortiori not in combination with adverse selection, which is what generates

novel results.4 As in earlier work, employers choose compensation structures aiming to balance

incentives, but the desire to extract rents or the need to select the best employees lead them to offer

2Scheuer and Netzer (2010) contrast this beneficial incentive effect of private insurance markets to a benevolent
government without commitment power, which would provide full insurance at the interim stage (once efforts have
been chosen) and thereby destroy any ex-ante incentive for effort.

3Armstrong and Vickers (2001) and Rochet and Stole (2002) study price discrimination in private-value models
where, in contrast with the present work, principals do not directly care about agents’types but are purely concerned
with rent extraction. Vega and Weyl (2012) study product design when consumer heterogeneity is of high dimension
relative to firms’choice variables, which allows for both cream-skimming and rent-extraction to occur in equilibrium.

4Acemoglu et al. (2007) show how career concerns can lead workers to engage in excessive signaling to prospective
employers, by exerting effort on both a productive task and an unproductive one that makes performance appear
better than it really is. Firms could temper career incentives by organizing production according to teamwork, which
generates coarser public signals of individual abilities, but the required commitment to team-based compensation
fails to be credible when individual performance can still be observed inside the partnership.
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socially distorted compensation schemes. In relatively competitive labor markets, in particular, a

firm raising its performance-based pay exerts a negative externality: it fails to internalize the fact

that competitors, in order to retain their own “talent”, will also have to distort their incentive

structure and effort allocation, thereby reducing the total surplus generated by their workforce.

While our paper is not specifically about executive pay, this is an important application of

the model. The literature on managerial compensation is usually seen as organized along two

contrasting lines (see, e.g., Frydman and Jenter (2010) for a recent survey). On one hand is the

view that high executive rewards reflect a high demand for rare skills (Rosen 1981) and the effi cient

workings of a competitive market allocating talent to where it is most productive, for instance

to manage larger firms (Gabaix and Landier 2008). Rising pay at the top is then simply the

appropriate price response to market trends favoring the best workers: skilled-biased technical

change, improvements in monitoring, growth in the size of firms, entry or decreases in mobility

costs. On the other side is the view that the level and structure of managerial compensation

reflect instead significant market failures. For instance, indolent or captured boards may grant top

executives pay packages far in excess of their marginal product, (Bertrand and Mullainathan 2001,

Bebchuk and Fried 2004). Alternatively, managers are given incentive schemes that do maximize

profits but impose significant negative externalities on the rest of society by inducing excessive short-

termism and risk-taking at the expense of consumers, depositors or taxpayers (public bailouts and

environmental cleanups, tax arbitrage, etc.) (e.g. Bolton et al. 2006, Besley and Ghatak 2013). In

particular, private returns in the finance industry are often argued to exceed social returns (Baumol

1990, Philippon and Reshef 2012). Our paper takes on board the first view’s premise that pay levels

and differentials largely reflect market returns to both talent and measured performance, magnified

in recent decades by technical change and increased mobility. At the same time, and closer in that

to the second view, we show that this very same escalation of performance-based pay can be the

source of severe distortions and long-run welfare losses in the sectors where it occurs —even absent

any externalities on the rest of society, and a fortiori in their presence.

The idea that labor market pressure will force firms to alter the structure of contracts they offer

to workers is shared with a couple of recent papers.5 In Marin and Verdier (2009), international

trade integration leads new entrants to compete with incumbents for managerial talent required to

operate a firm; within each firm principals also find it increasingly optimal to delegate decision-

making to middle-management, further raising the demand for skilled labor. The papers’focus and

mechanism are very different from ours, however. Agents receive no monetary incentives but derive

private benefits from delegation, and those rents are non-monotonic with respect to competition.

Furthermore, equilibrium changes in organizational design and activities performed tend to be ef-

ficient responses to relative factor endowments. In Acharya et al. (2011), firms can use two types

of incentives: a reward in case of success and the threat of being taken over by a raider in case

of failure. The latter deprives the manager of private benefits, so making takeovers hard to resist

5There is also an earlier literature examining the (generally ambiguous) effects of product market competition
on managerial incentives and slack, whether through information revelation (Holmström 1982, Nalebuff and Stglitz
1983) or demand elasticities and the level of profits (Schmidt 1997, Raith 2003).
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(“strong governance”) can be used to economize on bonus pay. Managers with high skills (which

are observable) are in short supply, however, so in equilibrium they appropriate all the rents they

generate. This forces their employers to renounce the threat of takeovers (“weak governance”),

whereas firms employing the more abundant low-skill managers can still avail themselves of it. In

contrast to our model, competition weakens here certain aspects of incentives (dismissal for fail-

ure) while strengthening others (reward for success). Most importantly, firms’governance choices,

and therefore also the competitiveness of the labor market, have no allocative impact: they only

redistribute a fixed surplus between managers, shareholders and potential raiders. In Acharya et

al. (2012), labor market competition interferes with the process of learning about agents’abilities.

A manager can invest in a safe asset or in a risky one whose return depends on his ability but will

be observable (to the firm and others) only if he remains in charge of it, with the same employer,

for two periods. There are no bonuses, so incentives are implicit (career concerns) ones. Absent

mobility, firms can commit ex-ante to paying everyone the same lifetime wage, thus insuring man-

agers against the risk of being of low ability; this also makes it optimal to quickly find out one’s

talent, so as to choose the type of project one is better suited to. With free mobility, managers

who stayed in a firm long enough to be revealed as talented would be bid away by competitors;

thus, as in Harris and Holmström (1982), such insurance is precluded. Instead, during the early

stages of their careers everyone moves to a different firm in each period so as to delay learning, and

in each of these short-term jobs all managers ineffi ciently select the risky investment, as it has a

higher unconditional expected return.

Finally, a recent literature incorporates considerations of intrinsic motivation into compensation

design and labor-market sorting. Besley and Ghatak (2005, 2006) find conditions under which

agents who derive private benefits from working in mission-oriented sectors will match assortatively

with such firms, where they receive low pay but exert substantial effort. Focusing on civil-service

jobs, Prendergast (2007) shows how it can be optimal to select employees who are either in empathy

with their “clients” (teachers, social workers, firefighters) or somewhat hostile to them (police

offi cers, tax or customs inspectors). When the state has imperfect information about agent’s types,

however, it is generally not feasible to induce proper self-selection into jobs. Most closely related

to our work in this literature is the multitask model of Kosfeld and von Siemens (2011), in which

workers differ in their social preferences rather than productivity: some are purely self-interested,

others conditional cooperators. Competition among employers leads to agents’sorting themselves

between “selfish jobs”, which involve high bonuses but no cooperation among coworkers and thus

attract only selfish types, and “cooperative jobs”characterized by muted incentives and cooperative

behavior, populated by conditional cooperators. Notably, positive profits emerge despite perfect

competition. Because the source of heterogeneity is different from the main one emphasized in our

paper, it is not surprising that the issue of excessive incentive pay does not arise in theirs.

Section 1 presents the basic model, while Section 2 analyzes the equilibrium under alternative

degrees of competition. Section 3 extends the analysis to both tasks being noisily observable and

incentivized; it also examines bonus caps and income taxes. Section 4 concludes. The main proofs

are gathered in Appendices A to C, more technical ones in supplementary Appendix D.
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2 Model

2.1 Agents

• Preferences. A unit continuum of agents (workers) engage in two activities, exerting effort a and

b respectively:

— Activity A is one in which individual contributions are not (easily) measurable and thus

cannot be part of a formal compensation scheme: long-term investments enhancing the firm’s

value, avoiding excessive risks and liabilities, cooperation, teamwork , etc. An agent’s contribution

to A is then driven entirely by his intrinsic motivation, va, linear in the effort a exerted in this

task. In addition to a genuine preference to “do the right thing” (e.g., an aversion to ripping

off shareholders or customers, selling harmful products, teaching shoddily, etc.), v can also reflect

social and self-image concerns such as fear of stigma, or an executive’s concern for his “legacy”.6

In some contexts it can also capture outside incentives not controlled by the firm, such as potential

legal liability.

—Activity B, by contrast, is measurable and therefore contractible: individual output, sales,

short-term revenue, etc. When exerting effort b, a worker’s productivity is θ+ b, where θ is a talent

parameter, privately known to each agent.7

The total effort cost, C(a, b), is strictly increasing and strictly convex in (a, b), with Cab > 0

unless otherwise noted, meaning that the two activities are substitutes. A particularly convenient

specification is the quadratic one, C(a, b) = a2/2 + b2/2 + γab, where 0 < γ < 1, as it allows for

simple and explicit analytical solutions to the whole model.8 These are provided in Appendix A,

whereas in the text we shall maintain a general cost function, except where needed to obtain further

results.

We assume an affi ne compensation scheme with incentive power or bonus rate y and fixed wage

z, so that total compensation is z + (θ + b)y.9 Agents have quasi-linear preferences

U(a, b; θ, y, z) = va+ (θ + b) y + z − C(a, b). (1)

• Types. To emphasize the roles of heterogeneity in v and θ, respectively, we shall focus on two polar
cases. Here and throughout Section 3, agents differ only in their productivities. Thus θ ∈ {θL, θH},

6Such preferences leading agents to provide some level of unrewarded effort were part of Milgrom and Holmström’
original multitasking model (1991, Section 3). They make the analysis most tractable, but Section 4.2 derives similar
results when performance in both tasks is incentivized but A is measured with more noise than B (or/and less
discriminating of worker talent). For recent analyzes of intrinsic motivation and social norms see, e.g., Bénabou
and Tirole (2003, 2006) and Besley and Ghatak (2005, 2006). In the specific context of firms, see Akerlof and
Kranton (2005) for evidence and Ramalingam and Rauh (2010) for a model of investment in employees’loyalty and
identification.

7The additive form of talent heterogeneity is chosen for analytical simplicity , as it implies that the first best
power of incentive is type-independent. Qualitatively similar results would obtain with the multiplicative form bθ, as
long as type heterogeneity in θ is not so high that the first-best set of contracts becomes incentive-compatible.

8 The model also works when the two tasks are complements, Cab < 0 (e.g., −1 < γ < 0) but the results in this
case are less interesting, e.g., competition is now, predictably, always more effi cient than monopsony.

9Unrestricted nonlinear schemes (as in Laffont and Tirole 1986) lead to qualitatively very similar results: see
Appendix B and the propositions therein.
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with ∆θ ≡ θH − θL > 0, and θi having probability qi. In Section 4.3, conversely, we shall consider

agents who differ only in their intrinsic motivations v for task A.

• Effort allocation. When facing compensation scheme (y, z), the agent chooses efforts a(y) and

b(y) so as to solve

max
(a,b)
{va+ (θ + b) y + z − C(a, b)} , (2)

leading to the first-order conditions ∂C/∂a = v, ∂C/∂b = y. Our assumptions on the cost function

imply that increasing the power of the incentive scheme raises effort in the measured task and

decreases it in the unobserved one:
da

dy
< 0 <

db

dy
.

It will prove convenient to decompose the agent’s utility into an “allocative” term, u(y), which

depends on the endogenous efforts, and a “redistributive”one, θy + z, which does not:

U(y; θ, z) ≡ U(a(y), b(y); θ, y, z) = u(y) + θy + z, (3)

where

u(y) ≡ va(y) + yb(y)− C(a(y), b(y)). (4)

Note that u′(y) = b(y) and ∂U(y; θ, z)/∂y = θ + b(y).

• Outside opportunities. We assume that any agent can obtain a reservation utility U , so that
employers must respect the participation constraint:

U(y; θ, z) = u(y) + θy + z ≥ U. (5)

The type-independence of the outside option is a polar case that will help highlight the effects of

competition inside the labor market. Thus, under monopsony every one has reservation utility equal

to Ū , whereas with competition reservation utilities become endogenous and type-dependent.10

2.2 Firm(s)

A worker of ability θ exerting efforts (a, b) generates a gross revenue Aa+B(θ+b) for his employer.

Employing such an agent under contract (y, z) thus results in a net profit of

Π(θ, y, z) = π(y) + (B − y) θ − z, (6)

where

π(y) ≡ Aa(y) + (B − y) b(y). (7)

represents the allocative component and (B − y)θ − z a purely redistributive one.

10We make the usual assumption that when a worker is indifferent between an employer’s offer and his reservation
utility he chooses the former. We also assume that Ū is high enough that z ≥ 0 in equilbrium (under any degree of
competition), but not so large that hiring some worker types is unprofitable (see Appendix D for the exact conditions).
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2.3 Social welfare

In order to better highlight the mechanism at work in the model, we take as our measure of social

welfare the sum of workers’and employers’payoffs, thus abstracting from any externalities on the

rest of society.11 Again, it will prove convenient to decompose it into an allocative part, w(y), and

a surplus, Bθ, that is independent of the compensation scheme (the pure transfer, (θ+ b)y+z, nets

out):

W (θ, y) ≡ U(a(y), b(y); θ, y, z) + Π(θ, y, z) = w(y) +Bθ, (8)

where

w(y) ≡ u(y) + π(y) = (A+ v) a(y) +Bb(y)− C(a(y), b(y)). (9)

Using the envelope theorem for the worker, u′(y) = b(y), we have:

w′(y) = Aa′(y) + (B − y) b′(y). (10)

We take w to be strictly concave,12 with a maximum at y∗ < B given by

w′(y∗) = Aa′(y∗) + (B − y∗) b′(y∗) = 0 (11)

and generating enough surplus that even low types can be profitably employed, namely

w(y∗) + θLB > Ū. (12)

In cases where (underprovision of) the “ethical”activity a also has spillovers on the rest of society

—be they technological (pollution), pecuniary (imperfect competition in the product market) or

fiscal (cost of government bailouts, taxes or subsidies)—total social welfare becomes w(y) + e · a(y),

where e is the per-unit externality. Clearly, this will only strengthen our main results about the

competitive overincentivization of the other activity, b.

3 Competing for talent

Throughout most of the paper (except for Section 4.3), v is known while θ ∈ {θH , θL} is private
information, with mean θ ≡ qLθL + qHθH .

13 We consider in sequence monopsony, perfect and

imperfect competition. Before proceeding, it is worth noting that if agents’types i = H,L were

11For instance, we can think of firms’ output as being sold on a perfectly competitive product market. It is,
however, very easy to incorporate social spillovers into the analysis, as we explain below.
12Such is the case, in particular, with quadratic costs; see Appendix A.
13Asymmetric information about ability remains a concern even in dynamic settings where performance generates

ex-post signals about an agent’s type. First, such signals may be diffi cult to accurately observe for employers other
than the current one, especially given the multi-task nature of production. Second, many factors can cause θ to
vary unpredictably over the life-cycle: age (which affect’s people’s abilities and preferences heterogeneously), health
shocks, private life issues, news interests and priorities, etc. Finally, different (imperfectly correlated) sets of abilities
typically become relevant at different stages of a career —e.g., being a good trader or analyst, devising new securities,
bringing in clients, closing deals, managing a division, running and growing an international company, etc.
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observable, the only impact of market structure would be on the fixed wages zi , whereas incentives

would always remain at the effi cient level, yi = y∗.

3.1 Monopsony employer

A monopsonist (or set of colluding firms) selects a menu of contracts (yi, zi) aimed at type i ∈
{L,H}. We assume that it wants to attract both types, which, as we will show, is equivalent to qL
exceeding some threshold.

The monopsonist maximizes expected profit

max
{(yi, zi)}i=H,L

{ ∑
i=H,L

qi [π(yi) + (B − yi)θi − zi]
}

subject to the incentive constraints

u(yi) + θiyi + zi ≥ u(yj) + θiyj + zj for all i, j ∈ {K,L} (13)

and the low-productivity type’s participation constraint

u(yL) + θLyL + zL ≥ U. (14)

This program is familiar from the contracting literature. First, incentive constraints, when added

up, yield (θi − θj)(yi − yj) ≥ 0, so the power of the incentive scheme must be non-decreasing in

type —a more productive agent must receive a higher fraction of his measured output. Second, the

low type’s incentive constraint is binding, and the high type’s rent above U is given by the extra

utility obtained by mimicking the low type: (∆θ)yL. Rewriting profits, the monopsonist solves:

max
{(yi, zi)}i=H,L

{ ∑
i=H,L

qi [w(yi) +Bθi]− U − qH(∆θ)yL,

}

yielding ymH = y∗(no distortion at the top) and14

w′(ymL ) =
qH
qL

∆θ, implying yL < y∗. (15)

The principal reduces the power of the low-type’s incentive scheme, so as to limit the high-type’s

rent. It is optimal for the firm to hire both types if and only if

qL
[
w(ymL ) +BθL − U

]
≥ qHymL ∆θ, (16)

meaning that the profits earned on low types exceed the rents abandoned to high types. By (15),

the difference of the left- and right-hand sides is increasing in qL, so the condition is equivalent to

14To exclude uninteresting corner solutions we shall assume that w′(0) > qH∆θ/qL. Since later on we shall impose
various other upper bounds on qH , this poses no problem.
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qL ≥ qL, where qL is defined by equality in (16).

Proposition 1 (monopsony) Let (16) hold, so that the monopsonist wants to employ both types.
Then ymH = y∗ and ymL < y∗ is given by

w′(ymL ) =
qH
qL

∆θ,

with corresponding fixed payments zmH = Ū + ymL ∆θ − u(y∗)− θHy∗ and zmL = Ū − u(ymL )− θLymL .
The resulting welfare loss is equal to

Lm = qL [w(y∗)− w(ymL )] . (17)

It increases with ∆θ, but need not be monotonic in A or B.

Note that since total social welfare is qH [w(yH) +BθH ]+ qL [w(yL) +BθL] , a mean-preserving

increase in the distribution of θ always reduces it, by worsening the informational asymmetry. In

contrast, an increase in A (or a decrease in B) has two opposing effects on Lm : (i) it makes any

given amount of underincentivization on the B task less costly, as the alternative task A is now

more valuable; (ii) the effi cient bonus rate y∗ given to the high types declines, and to preserve

incentive compatibility so must ymL , worsening low types’underincentivization. In the quadratic

case the two effects cancel out, as shown in Appendix A.

3.2 Perfect competition in the labor market

A large number of firms now compete for workers, each one offering an incentive-compatible menu

of contracts. We first look for a separating competitive allocation, defined as one in which: (i)

each worker type chooses a different contract, respectively (yL, zL) and (yH , zH) for i = H,L,

with resulting utilities UL and UH ; (ii) each of these two contracts makes zero profits, implying in

particular the absence of any cross-subsidy.15 Then, in a second stage, we investigate the conditions

under which this allocation is indeed an equilibrium, and even the unique one.

In a separating competitive equilibrium, any contract that operates must make zero profit:

Π(θH , yH , zH) = 0 ⇐⇒ π(yH) + (B − yH) θH = zH , (18)

Π(θL, yL, zL) = 0 ⇐⇒ π(yL) + (B − yL) θL = zL, (19)

which pins down zH and zL. Furthermore, a simple Bertrand-like argument implies that the low

type must receive his symmetric-information effi cient allocation,16

15One can then can indifferently think of each firm offering a menu and employing both types of workers, or of
different firms specializing in a single type by offering a unique contract.
16Absent cross-subsidies, the low type cannot receive more than the total surplus w(y∗) + θLB he generates under

symmetric information, or else his employer would make a negative profit. Were he to receive less, conversely, another
firm could attract him by offering (y∗, zL = zcL − ε) for ε small, leading to a profit ε on this type (and an even larger
one on any high type who also chose this contract). Low types must thus be offered utility equal to w(y∗) + θLB,
which only their symmetric-information effi cient allocation achieves.

11



ycL = y∗ and zcL = π(y∗) + (B − y∗)θL.

He should then not benefit from mimicking the high type, nor vice-versa,

w(y∗) +BθL ≥ u(yH) + θLyH + zH = w(yH) +BθH − yH∆θ, (20)

w(yH) +BθH ≥ w(y∗) +BθL + y∗∆θ, (21)

implying in particular that yH ≥ y∗. Among all such contracts, the most attractive to the high

types is the one involving minimal distortion, namely such that (20) is an equality:

w(ycH) = w(y∗)− (B − ycH) ∆θ. (22)

By strict concavity of w, this equation has a unique solution ycH to the right of y∗, satisfying

y∗ < ycH < B. The inequality in (20) is then strict, meaning that only the low type’s incentive

constraint is binding. Note that, as illustrated in Figure I, this is exactly the reverse of what

occurred under monopsony.17

Figure I: Distortions under monopsony and perfect competition

• Existence and uniqueness. When is this least-cost separating (LCS) allocation indeed an equilib-
rium, or the unique equilibrium of the competitive-offer game? The answer, which is reminiscent

of Rothschild and Stiglitz (1976), hinges on whether or not a firm could profitably deviate to a

contract that achieves greater total surplus by using a cross-subsidy from high to low types to

17To build intuition for this reversal, one can look at how the symmetric-information outcome fails incentive
compatibility. Under monopsony no employee obtains any rent, so type i’s symmetric information contract is:
(yi = y∗, zi = Ū − va(y∗) + C(a(y∗), b(y∗)) − [θi + b(y∗)]y∗). If it were still offered under asymmetric infor-
mation, the high type could then obtain a positive rent (∆θ)y∗ by choosing (y∗, zL); we thus expect the down-
ward incentive constraint to bind. Under perfect competition, the symmetric-information contract for type i is
(yi = y∗, zi = π(y∗) + (θi − y∗)B) . If it prevailed under asymmetric information, the low type could obtain extra
utility B∆θ by choosing (yH , zH). We thus now expect the upward incentive constraint to bind.
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ensure incentive compatibility.

Definition 1 An incentive-compatible allocation {(U∗i , y∗i )}i=H,L is interim effi cient if there exists

no other incentive-compatible {(Ui, yi)}i=H,L that
(i) Pareto dominates it: UH ≥ U∗H , UL ≥ U∗L, with at least one strict inequality.
(ii) Makes the employer break even on average: Σiqi[w(yi) + θiB − Ui] ≥ 0.

For the LCS allocation to be an equilibrium, it must be interim effi cient. Otherwise, there is

another menu of contracts that Pareto dominates it, which one can always slightly modify (while

preserving incentive-compatibility) so that both types of workers and the employer share in the

overall gain; offering such a menu then yields strictly positive profits. The converse result is also

true: under interim effi ciency there can clearly be no positive-profit deviation that attracts both

types of agents, and by a similar type of “small redistribution”argument one can also exclude those

that attract a single type. These claims are formally proved in the appendix, where we also show

that when the LCS allocation is interim effi cient, it is in fact the unique equilibrium. Furthermore,

we identify a simple condition for this to be case:

Lemma 1 The least-cost separating allocation is interim effi cient if and only if

qHw
′(ycH) + qL∆θ ≥ 0. (23)

This condition holds whenever qL exceeds some threshold q̃L < 1.

The intuition is as follows. At the LCS allocation, we saw that the binding incentive constraint

is the low type’s: U cL = U cH − ycH∆θ. Consider now an employer who slightly reduces the power of

the high type’s incentive scheme, δyH = −ε, while using lump-sum transfers δzH = (b(yH) + θH)ε

+ε2 to slightly more than compensate them for the reduction in incentive pay, and δzL = ε∆θ+ ε2

to preserve incentive compatibility. Such a deviation attracts both types (δUH = δUL = ε2, since

u′(y) = b(y)) and its first-order impact on profits is

qH
[(
π′(yH)− θH

)
δyH − δzH

]
− qLδzL =

[
qH w′(ycH) + qL∆θ

]
(−ε)

Under (23) this net effect is strictly negative, hence the deviation unprofitable. When (23) fails,

conversely, the increase in surplus generated by the more effi cient effort allocation of the high types

is suffi cient to make the firm and all its employees strictly better off. A higher qL = 1− qH means

fewer high types to generate such a surplus and more low types to whom rents (cross-subsidies)

must be given to maintain incentive compatibility, thus making (23) more likely to hold.

We can now state this section’s main results.

Proposition 2 (perfect competition) Let qL ≥ q̃L. The unique competitive equilibrium involves
two separating contracts, both resulting in zero profit:

1. Low-productivity workers get (y∗, zcL), where zcL is given by (19).
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2. High-productivity ones get (ycH , z
c
H), where zcH is given by (18) and ycH > y∗ by

w(y∗)− w(ycH) = (B − ycH)∆θ.

3. The effi ciency loss relative to the social optimum is

Lc = qH [w(y∗)− w(ycH)] = (B − ycH) qH∆θ. (24)

It increases with ∆θ and A, but need not be monotonic in B.

These results confirm and formalize the initial intuition that competition for talent will result in

an overincentivization of higher-ability types. As shown on Figure I, this is the opposite distortion

from that of the monopsony case, which featured underincentivization of low-ability types. When

the degree of competition is allowed to vary continuously (Section 3.4), we therefore expect that

there will be a critical point at which the nature of the distortion (reflecting which incentive

constraint is binding) tips from one case to the other.

• Skill-biased technical change. A higher θH exacerbates the competition for talented types, result-
ing in a higher bonus rate ycH that makes their performance-based pay rise more than proportionately

with their productivity BθH . This is in line with Lemieux et al.’s (2009)) findings about the con-

tribution of performance pay to rising earnings inequality. This equilibrium market response to

technical or human-capital change is ineffi cient, however, as it worsens the underprovision of long-

term investments and other voluntary efforts inside firms, thereby reducing the social value of the

productivity increase. For a mean-preserving spread in the distribution of θ’s only the deadweight

loss remains, so overall social welfare declines.

What happens when the LCS allocation is not interim effi cient, that is, when qL < q̃L? We saw

that it is then not an equilibrium, since there exist profitable deviations to incentive-compatible

contracts (involving cross-subsidies) that Pareto-dominate it. We also show in the appendix that

no other pure-strategy allocation is immune to deviations, a situation that closely parallels the

standard Rothschild and Stiglitz (1976) problem: the only equilibria are in mixed strategy.18 Since

such an outcome is not really plausible as a stable labor-market outcome, we assume from here on

qL ≥ max{q̃L, qL} ≡ q
∗
L. (25)

18An alternative approach is to assume that it is workers who make take-it-or-leave offers, instead of a competitive
industry making offers to them. From Maskin and Tirole (1992) we know that for qL ≥ q̃L, the unique equilibrium of
the resulting informed-principal game is the LCS allocation, so the result is the same as here with competitive offers.
By contrast, for qL ≥ q̃L, the set of equilibrium interim utilities is the set of feasible utilities (incentive compatible and
satisfying budget balance in expectation) that Pareto dominate (Uc

L, U
c
H). A second alternative is to use a different

equilibrium concept from the competitive screening literature, as in Scheuer and Netzer (2010); again, this has no
bearing on the region where the separating equilibrium exists. A third alternative would be to introduce search, free
entry by principals and contract posting as in Guerrieri et al. (2010). Self-selection then makes type proportions
among searchers in the market endogenous, in such a way that a separating equilibrium always exists.
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3.3 Welfare: monopsony versus perfect competition

• Single task (A = 0). As a benchmark, it is useful to recall that competition is always socially

optimal with a single task. The competitive outcome is then the single contract yc = y∗ = B, zc =

0; agents of either type are residual claimants for their production and therefore choose the effi cient

effort allocation.19 Monopsony, by contrast, leads to a downward distortion in the power of the

incentive scheme. Hence competition is always strictly welfare superior.

• Multitasking. From (17) and (22), Lm < Lc is larger if and only if

qL [w(y∗)− w(ymL )] < qH [w(y∗)− w(ycH)] . (26)

Consider first the role of labor force composition. As seen from (15) and (22), the monopsony

incentive distortion y∗ − ymL is increasing with qH/qL (limiting the high types’s rents becomes

more important), whereas the competitive one, ycH − y∗ is independent of it (being determined by
an incentive constraint across types). For small qH/qL, Lm/Lc is thus of order qL (qH/qL)2 /qH =

qH/qL, so (26) holds provided qL is high enough. With quadratic costs, we obtain an exact threshold

that brings to light the role of the other forces at play.

Proposition 3 (welfare) Let C(a, b) = a2/2 + b2/2 + γab. Social welfare is lower under compe-

tition than under monopsony if and only if qL ≥ q∗L and

qH
2qL

+

√
qH
qL

<

(
γ

1− γ2

)(
A

∆θ

)
. (27)

The underlying intuitions are quite general.20 First, competition entails a larger effi ciency loss

when the unrewarded task (long-run investments, cooperation, avoidance of excessive risks, etc.)

is important enough and the two types of effort suffi ciently substitutable. If they are comple-

ments (γ < 0), in contrast, competition is always effi ciency-promoting. Second, the productivity

differential ∆θ scales the severity of the asymmetric-information problem that underlies both the

monopsony and the competitive distortions. A monopsonistic firm optimally trades off total surplus

versus rent-extraction, so (by the envelope theorem) a small ∆θ has only a second-order effect on

overall effi ciency. Under competition the effect is first-order, because a firm raising its yH does not

internalize the deterioration in the workforce quality it inflicts on its competitors —or, equivalently,

the fact that in order to retain their “talent” they will also have to distort incentives and the

allocation of effort. This intuition explains why (27) is more likely to hold when ∆θ decreases.21

19Similar results holds if A > 0 but v = 0 : since a ≡ 0 for all y, the socially optimal bonus rate is y∗ = B, even
though it results in an ineffi cient effort allocation. This is clearly also the competitive outcome. .
20 In particular, the model’s solution with quadratic costs (given in Appendix A) also correspond to Taylor approx-

imations of the more general case when ∆θ is small, provided 1/(1− γ2) is replaced everywhere by −w′′(y∗).
21As shown in Appendix C, for small∆θ the lower bound q̃L above which (23) holds (and the competitive equilibrium

thus exists) is such that 1− q̃L is of order
√

∆θ. Thus, to rigorously apply the above reasoning involving first- versus
second-order losses for small ∆θ, one needs to also let qH become small. This further reduces y∗ − ymL while leaving
ycH − y∗ unchanged. This, in turn, further raises Lc/Lm, making it of order (∆θ)−3/2 rather than (∆θ)−1 .
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3.4 Imperfect competition

To understand more generally how the intensity of labor market competition affects the equilibrium

structure of wages, workers’ task allocation, firms’profits and social welfare, we now develop a

variant of the Hotelling model in which competitiveness can be appropriately parametrized.

As illustrated in Figure II, a unit continuum of workers is uniformly distributed along the unit

interval, x ∈ [0, 1] . Two firms, k = 0, 1, are located respectively at the left and right extremities

and recruit them to produce, with the same production function as before. When a worker located

at x chooses to work for Firm 0 (resp., 1), he incurs a cost equal to the distance tx (resp., t(1−x))

that he must travel. We assume that θ and x are independent and that a worker’s position is not

observable by employers, who therefore cannot condition contracts on this characteristic.

In the standard Hotelling model, agents also have an outside option (e.g., staying put) that yields

a fixed level of utility, Ū . This implies, however, that a change in t affects not only competitiveness

within the market (firm 1 vs. 2) but also, mechanically, that of the outside option —formally,

agents’participation constraints. To isolate the pure competitiveness of the market from that of

other activities, we introduce an intuitive but novel modeling device, ensuring in particular that

the market is always fully covered.

Figure II: Hotelling with co-located outside options

• Co-located outside option. Instead of receiving the outside option Ū for free, agents must also

“go and get it” at either the end of the unit interval, which involves paying the same cost tx or

t(1−x) as if they chose Firm 0 or Firm 1, respectively. One can think of two business districts, each

containing both a multitask firm of the type studied here and a competitive fringe or informal sector

in which all agents have productivity Ū . Alternatively, each agent could produce Ū “at home”but

then have to travel (or adapt) to one or the other marketplace to sell his output.

Without loss of generality, we can assume that each firm k = 0, 1 offers an incentive-compatible

menu of compensation schemes{yki , zki }i=H,L, in which workers who opt for this employer self-select.
Let Uki denote the utility provided by firm k to type i:

Uki ≡ u(yki ) + θiy
k
i + zki . (28)

A worker of type i, located at x, will choose firm k = 0 (say) if and only if

Uki − tx ≥ max
{
Ū − tx, Ū − t(1− x), U `i − t(1− x)

}
. (29)
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The first inequality reduces to Uki ≥ Ū : a firm must at least match its local outside option. If both

firms attract L-type workers, therefore, U `i ≥ Ū so the second inequality is redundant.

We shall focus the analysis on the (unique) symmetric equilibrium, in which firms attracts

half of the total labor force. To simplify the exposition, we shall take it here as given that: (i)

each firm prefers to employ positive measures of both types of workers than to exclude either one;

(ii) conversely, neither firm wants to “corner” the market on any type of worker, i.e. move the

corresponding cutoff value of x all the way to 0 or 1. In Appendix D we show that neither exclusion

nor cornering can be part of a best response by a firm to its competitor playing the strategy

characterized in Proposition 4 below, as long as

qL ≥ q̄L, (30)

where q̄L ∈ [q∗L, 1) is another cutoff independent of t. Assuming this condition from here on, we can

focus on utilities
(
Uki , U

`
i

)
resulting in interior cutoffs, so that firm k’s share of workers of type i is

xki

(
Uki , U

`
i

)
=
Uki − U `i + t

2t
. (31)

The firm then chooses (UL, UH , yL, yH) to solve the program:

max
{
qH(UH − U `H + t)[w(yH) + θHB − UH ] + qL(UL − U `L + t)[w(yL) + θLB − UL]

}
(32)

subject to:

UH ≥ UL + yL∆θ (µH) (33)

UL ≥ UH − yH∆θ (µL) (34)

UL ≥ Ū (ν) (35)

To shorten the notation, let mi ≡ w(yi) + θiB−Ui denote the firm’s margin on type i = H,L. The

first-order conditions, together with the requirement that Ui = U `i in a symmetric equilibrium, are:

qH(mH − t) + µH − µL = 0 (36)

qL(mL − t) + µL − µH + ν = 0 (37)

tqHw
′(yH) + µL∆θ = 0 (38)

tqLw
′(yL)− µH∆θ = 0. (39)

Note that µH and µL cannot both be strictly positive: otherwise (33) and (34) would bind, hence

yH = yL, rendering (38)-(39) mutually incompatible. This suggests that only one or the other

incentive constraint will typically bind at a given point.

• Constructing the equilibrium: key intuitions. Solving the above problem over all values of t is

quite complicated, so we shall focus here on the underlying intuitions. The solution to (33)-(39) is

formally derived in Appendix C; because the objective function (32) is not concave on the relevant

space for (UL, UH , yL, yH), Appendix D then provides a constructive proof that this allocation is
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indeed the global optimum. These and other technical complexities (exclusion, cornering) are the

reasons why we confine our analysis to the symmetric separating equilibrium.

(a) For large t, the equilibrium should resemble the monopsonistic one: the main concern is

limiting high types’rent, so firms distort yL < y∗ = yH to make imitating low types unattractive.

Conversely, for small t, the equilibrium should resemble perfect competition: the main concern is

attracting the H types, leading employers to offer them high-powered incentives, yH > y∗ = yL.

(b) As t declines over the whole real line, the high types’responsiveness to higher offered utility

UH rises, so firms are forced to leave them more rent. Since that rent is either yL∆θ or yH∆θ

(depending on which of the above two concerns dominates, i.e. on which types’incentive constraint

is binding), yL and yH should both be nonincreasing in t.

(c) Firms 0 and 1 are always actively competing for the high types. If t is low enough, they also

compete for L types, offering them a surplus above their outside option: UL > Ū. At the threshold

t1 below which UL starts exceeding Ū , yH has a convex kink: since the purpose of keeping yH above

y∗ is to maintain a gap UH −UL = yH∆θ just suffi cient to dissuade low types from imitating high

ones, as UL begins to rise above Ū , the rate of increase in yH can be smaller.

These intuitions translate into a characterization of the equilibrium in terms of three regions,

illustrated in Figure III and formally stated in Proposition 4 below.22

Figure III: equilibrium incentives under imperfect competition

Proposition 4 (imperfect competition) Let qL ≥ q̄L. There exist unique thresholds t1 > 0 and

t2 > t1 such that, in the unique symmetric market equilibrium:

1. Region I (strong competition): for all t < t1, bonuses are yL = y∗ < ŷIH(t), strictly decreasing

in t, starting from ŷIH(0) = ycH . The low type’s participation constraint is not binding, UL

22With quadratic costs one can show (see Appendix A) that each of the curves is convex, as drawn on the figure.
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> Ū, while his incentive constraint constraint is: UH − UL = ŷIH(t)∆θ.

2. Region II (medium competition): for all t ∈ [t 1, t2), bonuses are yL = y∗ < ŷIIH (t), with

ŷIIH (t) < ŷIH(t) except at t1 and strictly decreasing in t. The low type’s participation constraint

is binding, UL = Ū , and so is his incentive constraint: UH − UL = ŷIIH (t)∆θ.

3. Region III (weak competition): for all t ≥ t2, bonuses are yL = ŷL(t) < y∗ = yH , with ŷL(t)

strictly decreasing in t and lim
t→+∞

ŷL(t) = ymL . The low type’s participation and the high type’s

incentive constraints are binding : UL = Ū , UH − UL = ŷL(t)∆θ.

• Welfare. For each value of t, either yL or yH is equal to the (common) first-best value y∗, while

the other bonus rate, which creates the distortion, is strictly increasing in t. Recalling from (8)-(9)

that W = qHw(yH) + qLw(yL) +Bθ̄ we thus have, as illustrated on Figure IV:

Proposition 5 (optimal degree of competition) Social welfare is hill-shaped as a function of
the degree of competition in the labor market, reaching the first-best at t2 = w(y∗)+θH(B−y∗)+θLy,

where yL = y∗ = yH.

Figure IV: competition and social welfare

Note that we do not subtract fromW the total mobility cost t/4 incurred by agents (equivalently,

we add it to their baseline utility). This is consistent with using t as a measure of pure market

competitiveness, without introducing any additional effect. In particular, it is required to yield

back the monopsony levels of utility as t → +∞. One can think of t as a tax on mobility rebated
to agents, or as the profits of a monopolistic transportation or human-capital-adaptation sector

with zero marginal cost, engaged in limit pricing against a competitive fringe with marginal cost t.

Alternatively, in contexts where variations in t also involve a net resource cost, one could subtract

it from social welfare (as in Villas-Boas and Schmidt-Mohr 1999). In Appendix A we show that

increases in t can raise aggregate welfare even under this more demanding definition.

We next examine how the gains and losses in total welfare (under either definition) are distrib-

uted among the different actors in the market.

19



Proposition 6 (individual welfare and firm profits) As the labor market becomes more com-
petitive (t declines), both UH and UL increase (weakly for the latter), but inequality in workers’

utilities, UH − UL always strictly increases; firms’total profits strictly decline.

In Regions III and II, UL = Ū . In Region I, UL is decreasing in t, as we show in the appendix.

Since (UH − UL) /∆θ is equal to ŷH(t) over Regions I and II and to ŷL(t) over Region III, it follows

directly from Proposition 4 that ∂UH/∂t ≤ ∂ (UH − UL) /∂t < 0. As to profits, they must clearly

fall as t declines over Regions II and I, since overall surplus is shrinking but all workers are gaining.

In Region III, as ŷL(t) rises firms reap some of the effi ciency gains from low-type agent’s more

effi cient effort allocation, but the rents they must leave to high types increase even faster (as shown

in the appendix), so total profits decline here as well.

• Income inequality. We now consider the effects of a more competitive labor market on earnings,
which is what is measured in practice. While we analyze these comparative statics over all t ∈ R+,

the empirically relevant range for most sectors in a modern market economy is that of medium

to high mobility, namely Regions I and II. Indeed, this is where firms are more concerned with

retaining and bidding away from each other the high-ability types who can easily switch (x close

to 1/2) than with exploiting their more “captive” local markets (forcing down the rents of those

with x close to 0 or 1). We compare how the two types of workers fare in terms of total earnings

Yi ≡ [b(yi) + θi] yi + zi, as well as the separate contributions of performance-based and fixed pay.

Proposition 7 (income inequality) Let qL ≥ q̄L. As the labor market becomes more competitive
(t declines), both YH and YL increase (weakly for the latter). Furthermore,

1. Over Regions I and II (medium and high competition), inequality in total pay YH − YL rises,
as does its performance-based component. Inequality in fixed wages declines, so changes in

performance pay account for more than 100% of the rise in total inequality.

2. Over Region III (low competition), inequality in performance pay declines, while inequality in

fixed wages rises. As a result, inequality in total pay need not be monotonic. With quadratic

costs, a suffi cient condition for it to rise as t declines is B ≤ γA+ (1− γ2)∆θ.

These results are broadly consistent with the findings of Lemieux et al. (2009) about the driving

role of performance pay in rising earnings inequality, as well as their hypothesis that the increased

recourse to performance pay also serves a screening purpose. They are also in line with Frydman’s

(2007) evidence linking increased mobility (skills portability) of corporate executives to the rise in

both the level and the variance in their compensation.23

We demonstrate here the results for total earnings, leaving the others to the appendix. Since

zi = Ui − u(yi)− θiyi, we can write Yi = Ui + b(yi)yi − u(yi), for i = H,L. As t declines, Ui and yi
increase (at least weakly) and therefore so does Yi, since u′(y) = b. Furthermore,

YH − YL = UH − UL + b(yH)yH − u(yH) + u(yL)− b(yL)yL.

23See also Frydman and Saks’(2005) evidence on the rising share of performance pay in compensation.
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Over Regions I and II this becomes [∆θ + b(yH)] yH−u(yH) plus a constant term, with yH = ŷH(t);

the result then follow from u′(y) = b. Over Region III, YH − YL = [∆θ − b(yL)] yL + u(yL) plus a

constant term, with yL = ŷL(t); therefore, ∂(YH − YL)/∂t < 0 if and only if b′(yL)yL < ∆θ, which

need not hold in general. With quadratic costs, b′(yL) = 1/(1− γ2) so it holds on [t2,+∞) if and

only if y∗ = B − γA < (1− γ2)∆θ.

4 Extensions

4.1 Regulating compensation

Recent years have seen mounting pressure from the public, regulators and even shareholders to

limit the bonuses paid in the financial sector and similar high-powered incentives (e.g., stock and

options grants) given to top executives in other industries. We examine this issue in light of our

model, focusing on the case of perfect competition as it is both the most empirically relevant and

that in which the effi ciency losses from the “bonus culture”, such as excessive short-term focus or

risk-taking, are most severe.24 A first question is whether the government or regulator is able to

distinguish and treat differently the performance-related and fixed parts of compensation. If it is,

then absent any other decision margin that could be distorted, policy can be very effective.

Proposition 8 (effi cient bonus cap) If the regulator caps bonuses at y∗, the only equilibrium is

a pooling one in which all firms offer, and all workers take, the single contract (y∗, π(y∗)+(B−y∗)θ̄),
thereby restoring the first best.

Of course, things in practice may not be so simple. First, firms may relabel fixed and variable

compensation, in which case only total pay can be regulated, or taxed. Second, they may switch to

alternative forms of rewards that (at the margin) appeal differentially to different types but may be

even less effi cient screening devices than performance bonuses. Plausible examples include latitude

to serve on other companies’boards, to engage in own practice (doctors) or consulting (academics),

lower lock-in to company (low clawbacks, easier terms for quitting). To what extent each of these is

indeed more valued (relative to money) by more talented agents, and how the resulting distortions

compare to those arising from excessive bonuses, are ultimately empirical questions. Our purpose

in what follows is simply to show how, when such ineffi cient screening devices are readily available,

pay regulation can also backfire.

Suppose that $1 paid by the employer in the alternative “currency”yields utility $λi to a type-i

employee, where λL < λH < 1. Assume that in the absence of regulation, employers do not make

use of the ineffi cient transfer to screen workers:

|w′(ycH)|
∆θ

<
1− λH

∆λ
, (40)

24Besley and Ghatak (2013) explore a different rationale, based on the negative externalities arising from government
bailouts, for taxing the bonuses of financial intermediaries. In contrast, we continue to focus here on the benchmark
case where workers’and firms’activities have no spillovers on the rest of society. When the “ethical”activity A (or
its underprovision) does have such effects, e · a(y), the case for regulating compensation is naturally strengthened.
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where ∆λ ≡ λH − λL. The left-hand side measures the marginal distortion avoided by decreasing
the monetary bonus by $1/∆, which raises the low type’s utility from mimicking the high type

by $1. The right-hand side is the alternative transfer’s ineffi ciency, 1 − λH , scaled by the amount
1/(∆λ) needed to reduce the low type’s utility from mimicking the high type by $1, thus preserving

incentive-compatibility.25

Proposition 9 (ineffi cient bonus cap) Assume (40) and qH/qL < ∆λ/ (1− λH) .

1. Under a bonus cap at any ȳ ∈ [y∗, ycH ], the unique competitive equilibrium is a separating one.

Low types receive their symmetric-information contract (y∗, z∗ = w(y∗) + (B − y∗)θL) while

high types get bonus ȳ, a non-monetary transfer ζH = [(B − ȳ)∆θ + w(y∗)− w(ȳ)]/(1− λL)

and a monetary transfer zrH = w(ȳ) + (B − ȳ) θH − ζH .

2. Social welfare is strictly increasing (in the Pareto sense) with the cap level ȳ, and thus maxi-

mized when no binding regulation is imposed (ȳ = ycH).

The condition on qH/qL ensures that the least-cost separating allocation described in the first

part of the proposition is interim effi cient, and therefore the (unique) equilibrium. The inequality

is less likely to be satisfied if the alternative currency is very ineffi cient (λH small), required in large

quantities (∆λ small) to achieve separation, and if the high types are numerous (qH large). The

second result then follows from (40): even at ycH , where the marginal bonus distortion is maximal,

it is still smaller than that from using the alternative currency. A fortiori, the further down ȳ

forces yc, the less is gained in productive effi ciency, while the marginal distortion associated with

the alternative screening device remains constant.26

When the regulator is unable to distinguish the performance-related and fixed parts of compen-

sation, the only cap he can impose is on total earnings Y. Such regulations are also counterproductive

when firms have relatively easy access (e.g., at constant marginal cost) to alternative rewards that

allow them to screen and compensate high types.

Proposition 10 (ineffi cient compensation cap) Let total earnings be capped at any level Ȳ low
enough to be binding on the high type’s compensation in an unregulated equilibrium, but not on what

they would earn in a first-best situation where types are observable:27

Aa(y∗) +Bb(y∗) +BθH ≤ Y ≤ Aa(ycH) +Bb(ycH) +BθH = Y c
H (41)

25Formally, consider the utility UH = w(yH) + BθH − (1 − λH)ζH offered to high types by a zero-profit-making
firm that pays them ζH in the alternative currency. Maximizing UH subject to the low type’s incentive constraint
U∗L ≥ UH − yH∆θ − ζH∆λ leads, under (40), to yH = ycH and ζH = 0.
26This strong assumption is the polar opposite of that in Proposition 8 (ζH ≡ 0). More generally, ζ could have

increasing marginal cost, rising toward infinity at some finite ζ̄ > 0.
27These inequalities means that the cap binds on high-skill workers’compensation Y c

H in an unregulated equilibrium,
but not on what they would be paid in a first-best situation where types are observable. The latter also implies, by
Part 2 above, that the cap is not binding on low-skill workers’compensation Y c

L in an unregulated equilibrium.
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1. If qL is high enough, the unique equilibrium is the LCS allocation in which low types receive

their symmetric-information contract (y∗, z∗ = w(y∗) + (B − y∗)θL) while high types get a

“package (yrH , ζ
r
H , z

r
H) given by

w(y∗)− w(yrH) = (B − yrH)∆θ − (1− λL)
[
Aa(yrH) +Bb(yrH) +BθH − Y

]
,

ζH = π(yrH) +BθH + yrHb(y
r
H)− Y ,

zrH = Ȳ − [θH + b(yrH)] yrH .

2. Any tightening of the earnings cap (reduction in Y ) leads to a Pareto deterioration.

Although a confiscatory tax of 100% above a ceiling Ȳ is unambiguously welfare reducing, some

positive amount of taxation is always optimal to improve on the laissez-faire “bonus culture”. While

characterizing the optimal tax in this setting is complicated and left for future work, we can show:

Proposition 11 A small tax τ on total earnings always improves welfare: dW/dτ |τ=0 > 0.

The intuition is as follows. To start with, condition (40) ensures that, for τ suffi ciently small,

the firm does not find it profitable to resort to ineffi cient transfers, hence still uses performance pay

to screen workers. Taxing total earnings then has two effects. First, under symmetric information,

it distorts (net) incentives downward relative to the private and social optimum, y∗. Second, it

shrinks the compensation differential received by the two types under any given contract. This

reduces low types’ incentive to mimic high ones, thus dampening firms’need to screen through

high-powered (net) incentives and thereby alleviating the misallocation of effort. For small τ the

first effect is of second-order (a standard Harberger triangle), whereas the second one is of first

order, due again to the externality between firms discussed earlier.

4.2 Multidimensional incentives and noisy performance measurement

Performance in activity A was so far taken to be non-measurable or non-contractible. Consequently,

effort a was driven solely by intrinsic motivation, or by fixed outside incentives such as potential

legal liability or reputational concerns. In the other version of the multitask problem studied by

Holmström and Milgrom (1991), every dimension of performance can be measured but with noise,

and this uncertainty limits the extent to which risk-averse agents can be incentivized. We now

extend our theory to this case, where there need not be any intrinsic motivation. This variant of

the model is particularly applicable to the issue of short- versus long-term performance and the

possible recourse to deferred compensation, clawbacks and other forms of long-term pay,

Outputs in tasks A and B are now θA+a+εA and θB +b+εB, where θA, θB are the employee’s

talents in each task, a and b his efforts as before, and εA, εB independent random shocks with

εA ∼ N (0, σ2
A) and εB ∼ N (0, σ2

B). A compensation package is a triple (yA, yB, z) where yA and

yB are the bonuses on each task and z the fixed wage. As in Holmström and Milgrom (1991),

23



agents have mean-variance preferences. Letting r denote the index of risk aversion, utility is thus:

U(a, b; θA, θB, y, z) = (θA + a)yA + (θB + b)yB + z − C(a, b)− r

2

[
(yA)2σ2

A + (yB)2σ2
B

]
, (42)

with the cost function having the same properties as before. Given an incentive vector y ≡ (yA, yB),

the agent chooses efforts a(y) and b(y) that jointly solve Ca(a(y), b(y)) = yA, Cb(a(y), b(y)) = yB;

it is easily verified that a(y) is increasing in yA and decreasing in yB, while b(y) has the opposite

properties. The firm’s profit function remains unchanged, so total surplus is w(y) + AθA + BθB,

where the allocative component is now equal to

w(y) ≡ Aa(y) +Bb(y)− C(a(y), b(y))− r

2

[
(yA)2σ2

A + (yB)2σ2
B

]
. (43)

Assuming strict concavity and an interior solution, the vector of first-best bonuses y∗ ≡ (yA∗, yB∗)

solves the first-order conditions:

∂w

∂yA
(
yA∗, yB∗

)
=

∂w

∂yB
(
yA∗, yB∗

)
= 0, (44)

which is shown in the appendix to imply that yA∗ < A and yB∗ < B.

There are again two types of workers, H and L, in proportions qH and qL, who each select their

preferred contract from the menus
{

(yAi , y
B
i , zi)

}
i=H,L

offered by firms. Denoting ∆yτ ≡ yτH − yτL
and ∆θτ ≡ θτH − θτL for each task τ = A,B, incentive compatibility requires that

∑
τ=A,B

(∆yτ )(∆θτ ) ≥ 0. (45)

To simplify the analysis, we assume H types to be more productive in both tasks: ∆θA ≥ 0 and

∆θB > 0 (otherwise, which type is “better”depends on the slopes of the incentive scheme).

• Monopsony. Denoting Di ≡ AθAi +BθBi for i = H,L, a monopsonistic employer solves

max{qH [w(yH) +DH − UH ] + qL [w(yL) +DL − UL]}, subject to
UL ≥ U,
UH ≥ UL + yAL∆θA + yBL∆θB.

This yields ymH = y∗, while ymL is given by

1

∆θA
∂w

∂yA
(ymL ) =

1

∆θB
∂w

∂yB
(ymL ) = −qH

qL
. (46)

As before, the incentives of low types (only) are distorted downward, now in both activities. Note

also how the effi ciency losses, normalized by their offsetting rent reductions, are equalized across

the two tasks. As before, one can show that it is indeed optimal to employ both types as long as

qL is above some cutoff qL < 1, which we shall assume.

• Perfect competition. We look again for a least-cost separating equilibrium. Denoting USIL ≡
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w(y∗) +DL type L’s symmetric-information utility, such an allocation must solve:

max{UH}, subject to
UH = w(yH) +DH ,

USIL ≥ UH − yAH∆θA − yBH∆θB.

Let κc denote the shadow cost of the second constraint. The first-order conditions are then

1

∆θA
∂w(yH)

∂yAH
=

1

∆θB
∂w(yH)

∂yBH
= −κc, (47)

while the binding incentive constraint takes the form

w(y∗)− w(yH) =
(
A− yAH

)
∆θA +

(
B − yBH

)
∆θB. (48)

Hence, a system of three equations determining (yA,cH , yB,cH , κc), independently of the prior probabil-

ities, as usual for the LCS allocation. Clearly, high-ability agents are again overincentivized, now

in both tasks. Note also that even though competitive firms and monopsonist use screening for

very different purposes, resulting in opposite types of distortions, both equalize those distortions

(properly normalized by unit rents) across the two tasks.

The LCS allocation is, once again, the (unique) equilibrium if and only if it is interim effi cient.

In the appendix we generalize Lemma 1 to show:

Lemma 2 The LCS allocation ycH is interim effi cient if and only if

1

∆θA
∂w(ycH)

∂yAH
=

1

∆θB
∂w(ycH)

∂yBH
≥ − qL

qH
(49)

or, equivalently, κc ≤ qL/qH .

This condition generalizes (23) and has the same interpretation, which can now be given in

terms of either task. Intuitively, the larger the distortion in the partial derivatives, the higher

the welfare loss relative to first best; condition (49) requires that it not be so large as to render

profitable a deviation to a more effi cient contract sustained by cross-subsidies.

• Competition vs. monopsony. Competition yields lower welfare when Lm = qL [w(y∗)− w (ymL )]

< qH [w(y∗)− w(ycH)] = Lc. One simple case in which this occurs is, as before, when qH/qL is

small enough. Indeed w(y∗) − w(ycH) is independent of this ratio, whereas under monopsony the

distortion becomes small as the high types from whom it seeks to extract rents become more scarce:

as qH/qL tends to zero, (46) shows that ymL tends to y∗ and y∗− ymL is of order (qH/qL) . Therefore

w(y∗)− w (ymL ) is of order (qH/qL)2 , implying that Lm << Lc.

Proposition 12 There exist q∗∗H such that for all qH ≤ q∗∗H , welfare is higher under monopsony

than under competition.
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• Quadratic cost. This specification allows for many further results, particularly on comparative
statics. First, effort levels are a =

(
yA − γyB

)
/
(
1− γ2

)
and b(y) =

(
yB − γyA

)
/
(
1− γ2

)
, which

are non-negative as long as yA/yB ∈ [γ, 1/γ] . Next, note that the first-order conditions of the

first-best, monopsony and competitive problems lead to very similar systems of linear equations,

A− γB − yAH + γyBH − r
(
1− γ2

)
σ2
Ay

A
H = −κ̃

(
1− γ2

)
∆θA, (50)

B − γA− yBH + γyAH − r
(
1− γ2

)
σ2
By

B
H = −κ̃

(
1− γ2

)
∆θB, (51)

with the only difference being that κ̃ ≡ 0 in the first case, κ̃ ≡ qH/qL in the second, and κ̃ = κc in

the third. In particular, the first-best solution is

yA∗ =
rσ2

B (A− γB) +A

1 + r
(
σ2
A + σ2

B

)
+ (1− γ2)r2σ2

Aσ
2
B

< A, (52)

and a similar formula for yB∗ < B, obtained by permuting the roles of A and B. The condition

γ ≤ yA∗ /yB∗ ≤ 1/γ, which ensures that a(y∗) ≥ 0 and b(y∗) ≥ 0, is then equivalent to28

γrσ2
A

1 + rσ2
B

≤ A− γB
B − γA ≤

1 + rσ2
A

γrσ2
B

. (53)

The properties of this first-best benchmark parallel those in Holmström and Milgrom (1991).

Proposition 13 The first-best incentive yA∗ is decreasing in B in σ2
A, and conversely increasing

in A and σ2
B, whereas y

B∗ has the opposite properties. Both are decreasing in risk aversion, r.

Turning next to monopsony and competition, the system (50)-(51) can also be rewritten in

terms of the price distortions yτ − yτ∗, τ = A,B, leading to the following set of results.

Proposition 14 (incentive distortions) The relative overincentivization of task B compared to

task A induced by competition is equal to the relative underincentivization of task B compared to

task A induced by monopsony:

yB,cH − yB∗

yA,cH − yA∗
=
yB∗ − yB,mL

yA∗ − yA,mL

=

[
1 + r

(
1− γ2

)
σ2
A

]
∆θB + γ∆θA[

1 + r (1− γ2)σ2
B

]
∆θA + γ∆θB

≡ ρ
(
σ2
A, σ

2
B; ∆θA/∆θB; r

)
. (54)

It is greater:

(i) The greater the noise σ2
A in task A and the the lower the noise σ2

B in task B;

(ii) The greater the comparative advantage ∆θB/∆θA of H types in task B, relative to task A;

(iii) The greater workers’risk aversion if σ2
A/σ

2
B > ∆θA/∆θB (and the smaller if not).

28An alternative way of ensuring that a remains non-negative (allowing σ2A to become arbitrary large) is of course to
incorporate intrinsic motivation vaa into (42), with va ≥ γB. The model then nests that of Section 2 as a limiting case
for (σ2A, σ

2
B) → (+∞, 0). Alternatively, a < 0 (say) may be interpreted as nefarious or antisocial activities (stealing

coworkers’ideas, devising schemes to deceive customers, et.) that require effort but allow the agent to increase his
performance —and bonus earned—in the B dimension.
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These results are intuitive: more noisy measurement makes a task a less effi cient screening de-

vice —whether for rent-extraction or employee-selection purposes—while a higher ability differential

of low and high types makes it a more effi cient one. As to the “mirror image”property of relative

price wedges under monopsony and competition, it reflects the fact that both types of firms equalize

the (normalized) marginal distortions across the two tasks.29

We next consider workers’effort allocations.

Proposition 15 (effort distortions) (1) Competition distorts high-skill agents’effort ratio away
from task A, and monopsony away from task B, a(ycH)/b(ycH) < a(y∗)/b(y∗) < a(ymL )/b(ymL ), if and

only if
A− γB
B − γA >

∆θA

∆θB
. (55)

(2) Competition reduces the absolute level of effort on task A, a(ycH) < a(y∗), while increasing

that on task B (and monopsony has the opposite effects), if and only if

γrσ2
A

1 + rσ2
B

>
∆θA

∆θB
. (56)

The broad message of these results accords with that of Sections 3.1 and 3.2, but Proposition 15

also yields several new insights about how the misallocation of efforts is shaped by the measurement

error in each the two tasks, their substitutability in effort, high-skill agents’comparative advantage

in one or the other of them, and the degree of risk aversion. The second result is particularly

noteworthy: even though both tasks are more strongly incentivized under competition, effort in

task A declines, because task B becomes disproportionately rewarded.30

Finally, we can also state precisely when competition or monopsony is more effi cient. As before,

we denote q
L
the threshold value of qL above which the monopsonist employs both types, q̃L =

κc/(1 + κc) the minimum value ensuring that the LCS allocation is the competitive outcome, and

q∗L ≡ max{q
L
, q̃L}.

Proposition 16 (social welfare) Let qL ≥ q∗L. Social welfare is then higher under monopsony

than under competition if and only if qH/qL < (κc)2.

The condition ensures that qL(yA∗−yA,mL )2 < qH(yA,mH −yA∗)2, meaning that the losses from the

mispricing of activity A are higher under competition. Because the mispricing of B is proportional

to that of A, with the same coeffi cient ρ under monopsony and competition, total losses are also

higher.

29One can also solve explicitly the system with κ̃ = qH/qL for the monopsony solution ymL = (yA,mL , yB,mL ). In the
competitive case, the LCS condition (48) is quadratic in (yA,cL , yB,cL ), so by (54) it reduces to a quadratic equation in
yA,cL only (or equivalently, in κc).
30Note also that when (53) holds, so that a(y∗) ≥ 0, b(y∗) ≥ 0, (56) implies (55).
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4.3 Competition for the motivated

We now return to the benchmark specification of Section 3 (task A is non-contractible, task B

is perfectly measurable, agents are risk-neutral) and study the polar case where all workers have

the same productivity θ (normalized to 0 without loss of generality) in task B but differ in their

“ethical”motivations v for task A : a fraction pL has v = vL and the remaining pH have v = vH .

When facing compensation scheme (y, z), an agent of type vi has net utility ui(y) + z, where

ui(y) ≡ max
(a,b)
{via+ yb− C(a, b)}. (57)

Let ai(y) and bi(y) denote the corresponding efforts, namely the solutions to the system {Ca(a, b) =

vi and Cb(a, b) = y}, and note that u′i(y) = b. Concavity of the cost function implies here again that

a′i(y) < 0 < b′i(y), as well as aL(y) < aH(y) and bH(y) < bL(y) in response to any given incentive

rate y > 0.The employer of an agent with type vi makes net profit πi(y)− z, where

πi(y) ≡ Aai(y) + (B − y)bi(y). (58)

Finally, we denote

wi(y) ≡ ui(y) + πi(y), (59)

y∗i = arg max{wi(y)}. (60)

In contrast to the case of heterogeneity in talent θ, there are now generally different optimal incentive

rates for each type of worker.31 Next, we note that when confronted with an incentive-compatible

menu of options, the more pro-social type (vH) chooses a less powerful incentive scheme:32

yH ≤ yL (and so zH ≥ zL).

This, in turn, implies that if aL and aH denote the two types’equilibrium efforts on task A, then

aL ≤ aH . The more pro-socially inclined employee exerts more effort on task A both because he is
more motivated for it and because he chooses a lower-powered incentive scheme.

• Monopsony. The monopsonist offers an incentive-compatible menu (yL, zL) and (yH , zH), or

equivalently (yL, UL) and (yH , UH) so as to solve:

max
{(yi, zi)}i=H,L

{
∑

i=H,L

pi [wi(yi)− Ui] }, subject to

UL ≥ U
UH ≥ UL + uH(yL)− uL(yL)

UL ≥ UH + uL(yH)− uH(yH).

31 In the quadratic-cost benchmark, y∗L = y∗H = B − γA. In general, the variation of y with v involves the third
derivatives of C and is thus ambiguous.
32Adding up the two incentive constraints, UH ≥ UL + uH(yL)− uL(yL) and UL ≥ UH − uH(yH) + uL(yH), yields

0 ≥
∫ yL
yH

[u′H(y)− u′L(y)] dy =
∫ yL
yH

[bH(y)− bL(y)] dy. Since bH(y) < bL(y) for all y, the result follows.
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The first two constraints must clearly be binding, while the third imposes yH ≤ yL, as seen above.
Substituting in, the solution satisfies

ymH = y∗H (61)

w′L(yL) =
pH
pL

[
u′H(yL)− u′L(yL)

]
=
pH
pL

[bH(y)− bL(y)] (62)

when it is interior; more generally, the left-hand side of (62) must be no greater than the right-hand

side. Since the latter is strictly negative, one must have in any case

ymL > y∗L. (63)

The monopsonist offers a higher-powered incentive scheme than under symmetric information so

as to limit the rent of the more prosocial types, who clearly benefits less from an increase in y.

• Perfect competition. Because employees’intrinsic-motivation benefits va are private, firms have
no reason to compete to select more prosocial types. As a result, the kind of incentive distortion

seen earlier does not arise, and the competitive equilibrium is the symmetric-information outcome.

Employers offer the menu {(y∗i , z∗i )}i=H,L, where for each type y∗i is the effi cient incentive rate
defined by (60) and z∗i ≡ πi(y∗i ), leaving the firm with zero profit. Type i = H,L then chooses

max
j∈{H,L}

{
ui(y

∗
j ) + πi(y

∗
j ) = wi(y

∗
j )
}
. (64)

By definition, j = i is the optimal choice, so the symmetric-information outcome is indeed incentive

compatible.

Proposition 17 When agents are similar in measurable talent θ but differ in their ethical values
v, monopsony leads to an overincentivization of low-motivation types, ymL > y∗L (with y

m
H = y∗H),

whereas competition leads to the first-best outcome, ycL = y∗L, y
c
H = y∗H .

Would conclusions differ under an alternative specification of the impact of prosocial hetero-

geneity? Suppose that instead of enjoying task A more, a more prosocial agent supplies more

unmeasured positive externalities on the firm (or on her coworkers, so that their productivity is

higher, or their wages can be reduced due to a better work environment). In other words, agents

i = H,L share the same preferences,

ui(y) = max
(a,b)
{v̄a+ yb− C(a, b)} ≡ u(y)

but have different productivities in the A activity,

πi(y) = A (a(y) + νi) + (B − y)b(y). (65)

Under this formulation there is no way to screen an agent’s type, so the outcome under both
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monopsony and competition is full pooling at the effi cient incentive power:

y∗i = y∗ ≡ arg max{Aa(y) +Bb(y)− C (a(y), b(y))}. (66)

Sorting will occur, on the other hand, when agents’ intrinsic motivation is not unconditional, as

we have assumed, but reciprocal —that is, dependent on the presence in the same firm of other

people who act cooperatively (e.g., Kosfeld and von Siemens (2011)), or on the firm fulfilling a

socially valuable mission rather than merely maximizing profits (e.g., Besley and Ghatak 2005,

2006, Brekke and Nyborg 2006). The fact that the benefits of “competing for the motivated”

are somewhat attenuated in our model with respect to those only reinforces the contrast with the

potentially very distortionary effects of competition for “talent”, thus further strengthening our

main message.

5 Conclusion

This paper has examined how the extent of labor market competition affects the structure of

incentives, multitask efforts and outcomes such as short- and long-run profits, earnings inequality

and aggregate effi ciency. The analysis could be fruitfully extended in several directions.

First, one could analyze increased competition as a reduction in fixed costs and examine whether

there is too little or too much entry into the market. The modeling device of co-located outside

options we introduced into the linear Hotelling model should work for the circular one as well.

More generally, it could prove useful in other settings, as it allows for a clean separation between

intra- and inter-market (or brand) competition and ensures that the market remains covered at all

levels of competitiveness between Bertrand and monopoly.

A second extension is to allow for asymmetries between firms or sectors. For instance, task

unobservability may be less of a concern for some (e.g., private-equity partnerships) and more for

others (large banks), but if they compete for talent the high-powered incentives effi ciently offered in

the former may spread to the latter, and do damage there. Heterogeneity also raises the question of

the self-selection of agents into professions and their matching with firms or sectors, e.g., between

finance and science or engineering.

Our analysis has focused on increased competition in the labor market, but similar effects could

arise from changes in the product market. One can thus envision settings in which high-skill workers

become more valuable as firms compete harder for customers, for instance because the latter become

more sensitive to quality. Finally, the upward pressure exerted on pay by competition could also

result in agents motivated primarily by monetary gain displacing intrinsically motivated ones within

(some) firms, potentially resulting in a different but equally detrimental form of “bonus culture”.

This idea is pursued in Bénabou and Tirole (2013).
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Appendix A: Quadratic-Cost Case

Let the cost function be

C(a, b) = a2/2 + b2/2 + γab. (A.1)

with γ2 < 1, ensuring convexity. The main case of interest is γ > 0 (efforts are substitutes), but

all derivations and formulas hold with γ < 0 (complements) as well. The first-order conditions for

(2) yield v = a+ γb, and y = b+ γa, hence

a(y) =
v − γy
1− γ2

, b(y) =
y − γv
1− γ2

, and a′(y) =
−γ

1− γ2
, b′(y) =

1

1− γ2
. (A.2)

Equations (10)-(11) then lead to

y∗ = B − γA, (A.3)

w(y∗)− w(y) = −
∫ y

y∗
w′(z) dz = −

∫ y

y∗

(
y∗ − z
1− γ2

)
dz =

(y − y∗)2

2 (1− γ2)
. (A.4)

1. Monopsony. Substituting the last two expressions into Proposition 1 yields

ymL = y∗ − (1− γ2)
qH
qL

∆θ, (A.5)

Lm =
1

2

q2
H

qL
(1− γ2)(∆θ)2. (A.6)

2. Perfect competition. From (A.4) and (22), we get:

1

2 (1− γ2)
(ycH − y∗)2 = (B − ycH)∆θ. (A.7)

Let ν ≡ ycH − y∗ = ycH −B + γA > 0 and ω ≡
(
1− γ2

)
∆θ. Then ν2 + 2ω (ν − γA) = 0 and solving

this polynomial yields ν = −ω +
√
ω2 + 2ωγA > 0, or

ycH = B − γA− ω +
√
ω2 + 2ωγA. (A.8)

Note that ycH < B, since ω+ γA >
√
ω2 + 2ωγA. The resulting effi ciency loss relative to the social

optimum is

Lc = qH [w(y∗)− w(ycH)] = (B − ycH) qH∆θ =
(
γA+ ω −

√
ω2 + 2ωγA

)
qH∆θ. (A.9)

Finally, the least-cost separating allocation is interim effi cient if (23) holds, which here becomes

1

1− qL
≥
√

1 +
2γA

ω
. (A.10)
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It will be useful to rewrite the condition as

γA

ω
<

1

2

(
qL
qH

)2

+
qL
qH
. (A.11)

3. Welfare under monopsony versus competition. Using (A.6) and (A.9), condition (26) becomes:(
q2
H

2qL

)(
1− γ2

)
(∆θ)2 < (B − ycH)qH∆θ ⇐⇒ qH

2qL
ω < γA− ν ⇐⇒ ν < γA− qH

2qL
ω.

Substituting into the polynomial whose positive root is ν, this is equivalent to:(
γA− qH

2qL
ω

)2

> 2ω

(
qH
2qL

ω

)
=
qH
qL
ω2,

which yields (27). This inequality and the interim effi ciency condition (A.11) are simultaneously

satisfied if and only if

M(qL) ≡ 1− qL
2qL

+

√
1− qL
qL

<
γ

1− γ2

A

∆θ
≤ 1

2

(
qL

1− qL

)2

+
qL

1− qL
≡ M̄(qL). (A.12)

Note that:

(i) M(qL) < M̄(qL) if and only if qH/qL < 1, so for any qL > 1/2, (A.12) defines a nonempty

range for (A/∆θ)
[
γ/(1− γ2)

]
.

(ii) As qL → 1, M(qL) → 0 and M̄(qL) → +∞, so arbitrary values of (A/∆θ)
[
γ/(1− γ2)

]
become feasible, including arbitrarily large values of A or arbitrarily low values of ∆θ. In particular,

imposing γA < B(1−γ2)−qH∆θ/qL to ensure 0 < y∗ < ymL is never a problem for qL large enough.

4. Imperfect competition. In Region I, ŷH(t) is defined as the solution to (C.22) in Appendix

C, which here becomes:

(yH − y∗)2

2(1− γ2)
− (B − yH)∆θ +

t

qL∆θ

(yH − y∗)
(1− γ2)

= 0 ⇐⇒

ν2 + 2 (t/qL∆θ) ν − 2ω(γA− ν) = ν2 + 2(ω + t/qL∆θ)ν − 2ωγA = 0,

with the above definitions of ω and ν = yH − y∗. Solving, we have:

ŷH(t) = B − γA− t/qL∆θ − ω +
√

(ω + t/qL∆θ)2 + 2ωγA.

It is easily verified that ŷH(0) = ycH and

qL∆θ · ŷ′H(t) = −1 +
ω + t/qL∆θ√

(ω + t/qL∆θ)2 + 2ωγA
< 0. (A.13)

Moreover, this expression is increasing in t/qL, so ŷH(t) is decreasing and convex over Region I.
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In Region II, ŷH(t) is defined as the solution to (C.25) in Appendix 5, which here becomes:

w(y∗) + θLB −
(yH − y∗)2

2(1− γ2)
+ (B − yH)∆θ − t

∆θ

(yH − y∗)
(1− γ2)

− Ū − t = 0 ⇐⇒

ν2

2(1− γ2)
+ (ν − γA)∆θ +

t

∆θ

ν

(1− γ2)
+ θLB + Ū + t− w(y∗) = 0 ⇐⇒

ν2 + 2(ν − γA)ω +
2tν

∆θ
+ 2(1− γ2)

(
Ū + t+ θLB − w(y∗)

)
= 0 ⇐⇒

ν2 + 2ν(ω + t/∆θ)− 2γAω + 2(1− γ2)
(
Ū + t+ θLB − w(y∗)

)
= 0.

Solving, we have:

ŷH(t) = B − γA− t/∆θ−ω+
√

(ω + t/∆θ)2 + 2[ωγA+ (1− γ2)
(
Ū + t+ θLB − w(y∗)

)
]. (A.14)

Moreover,

ŷ′H(t) = −1 +
ω + t/∆θ√

(ω + t/∆θ)2 + 2[ωγA+ (1− γ2)
(
Ū + t+ θLB − w(y∗)

)
]
< 0

and it is increasing in t/∆θ, so ŷH(t) is decreasing and convex over Region II.

In Region III, ŷL(t) is defined as the solution to (C.29). Denoting ν = yL−y∗, this now becomes:

w(y∗) + θLB − Ū − t+ (γA− ν)∆θ − tqL
qH∆θ

ν

(1− γ2)
= 0 ⇐⇒

(1− γ2)
[
w(y∗) + θLB − Ū − t+ γA∆θ

]
= ν

(
ω +

tqL
qH∆θ

)
.

Solving, we have:

ŷL(t) = B − γA−
(1− γ2)

[
Ū + t− w(y∗)− θLB

]
− ωγA

ω + tqL/qH∆θ
. (A.15)

It is easily verified that ŷL(+∞) = B − γA− (1− γ2)qH∆θ/qL = ymL . Moreover, recalling (12),

ŷ′H(t) =
(qL/qH∆θ)

[
Ū − w(y∗)− θLB − ωγA∆θ

]
− ω

(ω + tqL/qH∆θ)2 /(1− γ2)
< 0

and this function is increasing in t/∆θ, implying that ŷL(t) is convex. �

Welfare effects of transport costs. Let W (t) = w(yH(t)) + qLw(yL(t)) + Bθ̄ and W̃ (t) ≡
W (t)−t/4. By Proposition 5,W ′(t) > 0 for all t.We now find conditions ensuring that W̃ ′(t) > 0 for

t small enough. For t ≤ t1,W ′(t) = qHw
′(ŷH(t))ŷ′H(t).With quadratic costs, and using (A.4), (A.8)

and (A.13), qHW ′(0)ŷ′H(0) = qH

(√
1 + 2γA/ω − 1

)(
1− 1/

√
1 + 2γA/ω

)
, which for small ∆θ is

equivalent to qH
√

2γA/ω. As seen from (A.10), interim effi ciency requires qH ≤ (1 + 2γA/ω)−1/2 ≈√
ω/2γA. Letting qH /

√
ω/2γA yields qHW ′(0)ŷ′H(0) ≈ 1 > 1/4, hence the result. �
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Proof of Proposition 14. Subtracting the first-best solution from (50)-(51) yields

− [1 +2
(
1− γ2

)
σ2
A]xA + γxB = −κ̃

(
1− γ2

)
∆θA, (A.16)

γxA − [1 +2
(
1− γ2

)
σ2
B]xB = −κ̃

(
1− γ2

)
∆θB, (A.17)

from which ρ is easily obtained. Its comparative statics follow from direct computation. �

Proof of Proposition 15. (1) It easily seen that a(yH)/b(yH) < a(y∗)/b(y∗) if and only if

yB∗ /y
A
∗ < xBH/x

A
H . Using (52) and (54), this means:[

1 + r
(
1− γ2

)
σ2
B

]
∆θA + γ∆θB[

1 + r (1− γ2)σ2
A

]
∆θB + γ∆θA

<
rσ2

B (A− γB) +A

rσ2
A (B − γA) +B

.

This can be rewritten as

∆θA

∆θB
<

[
1 + r

(
1− γ2

)
σ2
A

] [
rσ2

B (A− γB) +A
]
− γ

[
rσ2

A (B − γA) +B
][

1 + r (1− γ2)σ2
B

] [
rσ2

A (B − γA) +B
]
−
[
γrσ2

B (A− γB) +A
]

=

[
1 + r

(
1− γ2

)
σ2
A

]
rσ2

B (A− γB) +A− γB + rσ2
A [A− γB][

1 + r (1− γ2)σ2
B

]
rσ2

A (B − γA) +B − γA+ rσ2
B (B − γA)

,

which simplifies to (55).

(2) We have a(ycH) < a(y∗) if and only if xAH < γxBH , that is, γρ > 1, which occurs when

γ
[
1 + r

(
1− γ2

)
σ2
A

]
∆θB + γ2∆θA >

[
1 + r

(
1− γ2

)
σ2
B

]
∆θA + γ∆θB ⇐⇒

r
(
1− γ2

) [
γσ2

A∆θB − σ2
B∆θA

]
> (1− γ)2 ∆θA ⇐⇒ r

[
γσ2

A∆θB − σ2
B∆θA

]
> ∆θA,

which yields (56). Furthermore, b(ycH) > b(y∗) if only if xBH > γxAH , i.e. ρ > γ, which is implied by

γρ > 1. Note, on the other hand, that competition always increases total gross output above the

effi cient level, Aa(y∗) +Bb(y∗) < Aa(ycH) +Bb(ycH), if only if 0 < A
(
xAH − γxBH

)
+B

(
xBH − γxAH

)
,

or equivalently since xAH > 0 : 0 < A (1− ργ)+B (ρ− γ) = A−γB+ρ(B−γA),which always holds.

For a monopsonist xAL < 0, so the same condition yields Aa(ymL ) +Bb(ymL ) < Aa(y∗) +Bb(y∗).�

Proof of Proposition 16. Since w(y) is quadratic and minimized at y∗,

w(y∗)− w (ymL ) =
1

2
(y∗ − ymL )T ·H(w)|y∗ · (y∗ − ymL ) =

(
xAm
)2

2
(1 ρ) H(w)|y∗ T (1 ρ),

w(y∗)− w (ycH) =
1

2
(y∗ − ycH)T ·H(w)|y∗ · (y∗ − ycH) =

(
xAc
)2

2
(1 ρ) H(w)|y∗ T (1 ρ),

where we used Proposition (15). Therefore, qL [w(y∗)− w (ymL )] < qH [w(y∗)− w (ycH)] if and only

if qL
(
xAm
)2
< qH

(
xAc
)2
. We saw earlier that xAm/x

A
c = xBm/x

B
c = (qH/qLκ), hence the result. �
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Appendix B: Nonlinear Contracts

We allow here for general reward functions Y (r), where r ≡ b+ θ and Br is the employer’s revenue

on the verifiable task. As it will be more convenient to work directly with effort b rather than the

marginal incentive y(b) ≡ Y ′(b), let us define the pseudo-cost function

Ĉ(b) ≡ min
a
{C(a, b)− va} , (B.1)

and denote â(b) the minimizing choice. It is easily verified that â′(b) < 0 when Cab < 0 and that

Ĉ(b) is strictly convex. To preclude unbounded solutions, we shall assume that limb→+∞ Ĉ
′(b) ≥ B.

The allocative component of total surplus is

ŵ(b) ≡ Aâ(b) +Bb− Ĉ(b), (B.2)

which shall take to be strictly quasiconvex and maximized at b∗ > 0. The effort levels bi chosen by

each type i = H,L are given by Ĉ ′(bi) = Y ′(bi+θi), with resulting utilities are Ui = Y (bi+θi)−Ĉ(bi),

so the relevant participation and incentive constraints are now:

UL = Y (bL + θL)− Ĉ(bL) ≥ Ū , (B.3)

UH ≥ UL + Ĉ(bL)− Ĉ(bL −∆θ), (B.4)

UL ≥ UH − Ĉ(bH + ∆θ) + Ĉ(bH). (B.5)

Summing up the last two yields Ĉ(bL) − Ĉ(bL − ∆θ) ≤ Ĉ(bH + ∆θ) − Ĉ(bH), which by strict

convexity of Ĉ requires that rL ≡ bL + θL < bH + θH ≡ rH .
1. Monopsony. As before, the low types’participation and high type’s incentive constraints

must be binding in an optimum, so the firm solves

max
{bH ,bL}

{ ∑
i=H,L

qi
[
ŵ(bi) +Bθi − Ū

]
− qH [Ĉ(bL)− Ĉ(bL −∆θ)]

}
,

leading to bmH = b∗ and

ŵ′(bmL ) =
qH
qL

[
Ĉ ′(bmL )− Ĉ ′(bmL −∆θ)

]
(B.6)

when the solution is interior and to bmL = ∆θ when it is not; in either case, bmH < b∗.

As before, the firm is willing to employ the low types provided the profits they generate exceed

the rents abandoned to the high types:

qL
[
ŵ(bmL ) +BθL − Ū

]
≥ qH

[
Ĉ(bL)− Ĉ(bL −∆viθ)

]
, (B.7)

which defines a lower bound q
L
< 1 for qL. Compared with the case of linear incentives, the greater

flexibility afforded by nonlinear schemes allows the monopsonist to reduce the high type’s rents,

UH = Ū + Ĉ(bmL )− Ĉ(bmL −∆θ) < Ū + Ĉ ′(bmL )∆θ ≡ Ū + ymL ∆θ (B.8)
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while keeping the distortion —underincentivization of the low types—unchanged, thereby increasing

his profits.

2. Perfect competition. In a separating competitive equilibrium (with no cross-subsidies),

Ui = w(bi) +θiB for i = L,H, and by the same argument as in Section 3.2 the low type must get

his effi cient symmetric-information allocation, so bcL = b∗. Furthermore, among all such allocations

that are incentive-compatible, the most attractive to high types is the LCS one, defined by: .

bH ≡ arg max
b

{
ŵ(b) | ŵ(b∗)− ŵ(b) ≥ B∆θ − Ĉ(b+ ∆θ) + Ĉ(b)

}
. (B.9)

Denoting the Lagrange multiplier as λ ≥ 0, the first-order condition is −ŵ′(b)(1 − λ) = λ[Ĉ ′(b +

∆θ)− Ĉ ′(b)], requiring that b ≥ b∗ and leading to two cases:
(i) If Ĉ(b∗ + ∆θ)− Ĉ(b∗) ≥ B∆θ, then b = b∗.

(ii) If Ĉ(b∗ + ∆θ)− Ĉ(b∗) < B∆θ, then bH is uniquely given by

ŵ(b∗)− ŵ(bcH) = B∆θ − Ĉ(bcH + ∆θ) + Ĉ(bcH), (B.10)

since Ω(b) ≡ ŵ(b∗)− ŵ(b) + Ĉ(b+ ∆θ)− Ĉ(b) is strictly increasing on (b∗,+∞), with Ω(b∗) < B∆θ

and Ω(b) ≥ Ĉ ′(b) > B∆θ for all b large enough. Competition now leads to overincentivization only

if Ĉ(b∗ + ∆θ)− Ĉ(b∗) is not too large, meaning that b∗ itself is not too large, which in turn occurs

when A is large enough.33 Whereas the greater flexibility afforded by nonlinear contracts allows

a monopsonist to reduce the high types’rents and increase his profits, in a competitive industry

those benefits are appropriated by the high types, in the form of more effi cient contracts:

ŵ(b∗)− ŵ(bcH) ≤ B∆θ − Ĉ(bcH + ∆θ) + Ĉ(bcH) < B∆θ − Ĉ ′(bcH)∆θ ≡ (B − bcH)∆θ. (B.11)

As before, the above separating allocation is the equilibrium if and only if it is interim effi cient,

meaning that there is no profitable deviation consisting of lowering bH by a small amount δbH = −ε
to increase total surplus while offering compensating transfers δYL = Ĉ ′(bH + ∆θ)− Ĉ ′(bH) to low

types so as to maintain incentive compatibility (note that δUH = [Y ′(bH + θH) − Ĉ(bH)]ε = 0 to

the first order). In other words,

qHŵ
′
H(bH) + qL

[
Ĉ ′(bH + ∆θ)− Ĉ ′(bH)

]
≥ 0, (B.12)

which defines a lower bound q̃L < 1 for qL. We denote again q∗L ≡ max{ q
L
, q̃L}.

The following proposition summarizes the above results.

Proposition 18 Let qL > q∗L. With unrestricted nonlinear contracts, it remains the case that:

1. A monopsonist distorts downward the measurable effort of low types: bmL < b∗ = bmH , with b
m
L

given by (B.6).

33Note that Ĉ(b∗ + ∆θ)− Ĉ(b∗) < Ĉ′(b∗ + ∆θ)∆θ, so Ĉ(b∗ + ∆θ)− Ĉ(b∗) < B∆θ if b∗ < Ĉ′−1(B)−∆θ. This, in
turn, occurs when Aâ′[Ĉ′−1(B)−∆θ] +B < Ĉ′[Ĉ′−1(B)−∆θ], for which it suffi ces that a be large enough.
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2. Under perfect competition, if Ĉ(b∗+∆θ)−Ĉ(b∗) < B∆θ, firms distort upwards the measurable

effort of high types: bcL = b∗ < bcH , with b
c
H given by (B.10). If Ĉ(b∗ + ∆θ) − Ĉ(b∗) ≥ B∆θ,

both effort levels are effi cient: bcL = b∗ = bcH .

For small ∆θ, Taylor expansions show that: (i) b∗−bmL is, as before, of order ∆θ, with coeffi cient

qH/qL; (ii) under competition, since Ĉ ′(b∗) < B∆θ, bcH−b∗ is positive and again of order
√

∆θ, with

coeffi cient independent of qH and qL; (iii) 1− q̃L is also of order ∆θ. Therefore, the ratio Lc/Lm is

at least of the same order as qH∆θ/qL [(qH/qL)∆θ]2 = (qL/qH) ∆θ, or equivalently (∆θ)−3/2 , and

hence arbitrarily large.

3. Quadratic-cost case. Here again, the cost function (A.1) leads to explicit and transpar-

ent solutions, including for the comparison of effi ciency losses under monopsony and competition.

Minimizing C(a, b)− va over a leads to â(b) = v − γb and

Ĉ(b) =
1

2
[b2 − (v − γb)2] =

1

2

[
(1− γ2)b2 + 2vγb− v2

]
. (B.13)

Therefore Ĉ ′(b) = (1− γ2)b+ vγ and ŵ′(b) = B − γ (A+ v)− (1− γ2)b, leading to

(1− γ2)b∗ = B − γ (A+ v) , (B.14)

ŵ(b∗)− ŵ(b) = −w′′(b∗)(b− b∗)2

2
=

1− γ2

2
(b− b∗)2,

Ĉ(b)− Ĉ(b∗) = ŵ(b∗)− ŵ(b∗) + (B − γA) (b− b∗)

=
1− γ2

2
(b− b∗)2 + (B − γA) (b− b∗). (B.15)

Under monopsony, bmL is defined (when interior) by (B.6), which now becomes:

B − γ (A+ v)− (1− γ2)bmL =
qH
qL

(1− γ2)∆ ⇐⇒

bmL = b∗ − qH
qL

∆. (B.16)

This is the same outcome as with linear contracts, and the marginal incentives yi ≡ Y ′(bi + θi) =

C ′(bi) are also unchanged. The rent left to high types is now lower, however, implied by (B.8).

Under competition, bcH is given by (B.9). Now, for all b, ŵ(b∗)−ŵ(b) ≥ B∆θ−Ĉ(b+∆θ)+Ĉ(bH)

if and only if

B∆θ − [ŵ(b∗)− ŵ(b)] ≤
[
Ĉ(bH + ∆θ)− C(b∗)

]
−
[
Ĉ(b)− C(b∗)

]
⇐⇒

B∆θ − 1− γ2

2
(b− b∗)2 =

1− γ2

2
(b+ ∆θ − b∗)2 − 1− γ2

2
(b− b∗)2 + (B − γA) ∆θ ⇐⇒

2γA∆θ

1− γ2
≤ ∆θ [2(b− b∗) + ∆θ] + (b− b∗)2 = (b− b∗ + ∆θ)2
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Therefore (B.9) becomes

bcH = b∗ + max

{
0,−∆θ +

√
2γA∆θ

1− γ2

}
(B.17)

or, in terms of marginal incentives, ycH = y∗+max
{

0,−ω +
√

2ωγA
}
. Comparing these expressions

to (A.8), its is clear that competition leads to less distortion when nonlinear contracts are allowed

(possibly none, for low A), whereas the monopsony distortion remains the same. Nonetheless, when

A is high enough, or ∆θ small enough, competition can still be effi ciency-reducing:

Proposition 19 Let C(a, b) = a2/2 + b2/2 + γab. When employers can offer arbitrary nonlinear

contracts, social welfare is lower under competition than under monopsony if and only if qL is high

enough and
1 + qH

2qL
<

(
γ

1− γ2

)(
A

∆θ

)
. (B.18)

Proof. We have

Lm =
qL (b∗ − bmL )2

2(1− γ2)
<
qH (bcH − b∗)

2

2(1− γ2)
= Lc ⇐⇒√

qL
qH

qH
qL

∆θ <

√
2γA∆θ

1− γ2
−∆θ ⇐⇒ 1

2

(
1 +

√
qH
qL

)2

<
γ

1− γ2

A

∆θ
⇐⇒

M̂(qL) ≡ 1 + qH
2qL

<
γ

1− γ2

A

∆θ

Thus, together with the interim-effi ciency condition, which remains unchanged, we require:

M̂(qL) ≡ 2− qL
2qL

<
γ

1− γ2

A

∆θ
≤ 1

2

(
qL

1− qL

)2

+
qL

1− qL
≡ M̄(qL).

While the upper bound M̄(qL) is unchanged from (A.12), the lower bound is higher than in the

linear-contracts case, M̂(qL) > M(qL),since

1− qL
2qL

+

√
1− qL
qL

<
1− qL

2qL
+

1

2qL
.

Nonetheless, it remains the case that:

(i) M(qL) < M̄(qL) if and only if qH/qL < 1, so for any qL > 1/2, (A.12) defines a nonempty

range for (A/∆θ)
[
γ/(1− γ2)

]
.

(ii) As qL → 1, and M̄(qL)→ +∞ so arbitrary large values of (A/∆θ)
[
γ/(1− γ2)

]
become fea-

sible, including arbitrarily large values of A or arbitrarily low values of ∆θ. In particular, imposing

γA < B(1− γ2)− qH∆θ/qL to ensure 0 < y∗ < ymL is never a problem for qL large enough. �

38



Appendix C: Main Proofs

Proof of Proposition 1. Only the comparative-statics results remains to prove. First, differen-
tiating (10) and (17) with respect to ∆θ yields

∂ymL
∂∆θ

=
qH
qL

1

wyy(ymL )
< 0 < qH

wy(y
m
L )

−wyy(ymL )
=
∂Lm

∂∆θ
. (C.1)

Turning next to A, we have

∂ymL
∂A

=
wyA(ymL )

−wyy(ymL )
=

a′(ymL )

−wyy(ymL )
< 0 (C.2)

1

qL

∂Lm

∂A
= wA(y∗;A,B)− wA(ymL ;A,B) + wy(y

∗;A,B)
∂y∗

∂A
− wy(ymL ;A,B)

∂ymL
∂A

= a(y∗)− a(ymL )− qH
qL

∆θ
∂ymL
∂A

, (C.3)

showing clearly the two opposing effects discussed in the text, and which exactly cancel out in the

quadratic-cost case (see (A.5)). Similarly, for B :

∂ymL
∂B

=
wyB(ymL )

−wyy(ymL )
=

b′(ymL )

−wyy(ymL )
> 0 (C.4)

1

qL

∂Lm

∂B
= wB(y∗;A,B)− wB(ymL ;A,B) + wy(y

∗;A,B)
∂y∗

∂B
− wy(ymL ;A,B)

∂ymL
∂B

= b(y∗)− b(ymL )− qH
qL

∆θ
∂ymL
∂B

, (C.5)

showing again two offsetting effects on Lm. �

Proof of Lemma 1. Denote U cL and U
c
H the two types’utilities in the LCS allocation, and recall

that the former takes the same value as under symmetric information.

Claim 1 The LCS allocation is interim effi cient if and only if it solves the following program

(P) : max
(UL,UH ,yH ,yL)

{UH}, subject to:

UL ≥ U cL = w(y∗) + θLB (C.6)

UL ≥ UH − yH∆θ (C.7)

UH ≥ UL + yL∆θ (C.8)

0 ≤
∑

i=H,L

qi [w(yi) +Bθi − Ui] , (C.9)

Proof. Conditions (C.7) and (C.8) are the incentive constraints for types L and H respectively,

and condition (C.9) the employers’interim break-even constraint. Now, note that:

(i) If the LCS allocation does not achieve the optimum, interim effi ciency clearly fails.
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(ii) If the LCS allocation solves (P), there can clearly be no incentive-compatible Pareto im-

provement in which UH > U cH , but neither can there be one in which UH = U cH and UL > U cL.

Otherwise, note first that one could without loss of generality take such an allocation, to satisfy

yH ≥ y∗; otherwise, replacing yH by y∗ while keeping UH and UL unchanged strictly increases

profits, so the LCS allocation remains (even more) dominated. Starting from such an allocation

with yH ≥ y∗, let us now reduce UL by some small η > 0 and increase UH by some small ε, while

also increasing yH by (ε+ η) /∆θ to leave (C.6) unchanged (while (C.7) is only strengthened). This

results in extra profits of qH [w′(yH) (ε+ η) ∆θ − ε] + qLη, which is positive as long as

η >
qH [1− w′(yH)∆θ] ε

qL + qHw′(yH)∆θ
.

Both types and the firm are now strictly better off than in the LCS allocation, contradicting the

fact that it is a solution to (P).

To study interim effi ciency and prove Lemma 1, let us therefore analyze the solution(s) to (P).

First, condition (C.9) must be binding, otherwise UL and UH could be increased by the same small

amount without violating the other constraints. Second, (C.7) must also be binding. Indeed, solving

(P) without that constraint leads to UL = U cL and yH = y∗; maximizing UH subject to (C.9) then

leads to yL = y∗ and UL = w(y∗) + BθH , so (C.6) holds with equality, a contradiction. Third,

(C.8) now reduces to yH ≥ yL. Two cases can then arise:
(i) If (C.6) is binding, the triple (UL, UH , yH) is uniquely given by the same three equality

constraints as the LCS allocation, and thus coincides with it.

(ii) If (C.6) is not binding, the solution to (P) is the same as when that constraint is dropped.

Substituting (C.7) into (C.9), and both being equalities, we have UH = Σqi [w(yi) +Bθi]+qLyH∆θ,

so (P) reduces to

max
yH ,yL

{qHw(yH) + qL [w(yL) + yH∆θ] |yH ≥ yL}. (C.10)

For all x ≥ 0, define the function ỹ(x) ≡ arg maxy{w(y)+xy } and let x̄ ≡ −w′(B). On the interval

[0, x̄] the function ỹ is given by w′(ỹ(x)) = −x, so it is strictly increasing up to ỹ(x̄) = B, while

for x > x̄, ỹ(x) ≥ B. Furthermore, it is clear that ỹ(x) ≥ y∗ with equality only at x = 0, so the

pair (yH = ỹ(qL∆θ/qH), yL = y∗) is the solution to (C.10). It is then indeed the case that (C.6) is

non-binding, UL > U cL = UH − yH∆θ, if and only if

w(y∗) + θLy
∗ < qH [w(yH) +BθH ] + qL [w(y∗) +BθL]− qHyH∆θ

or equivalently H(qL∆θ/qH) ≥ 0, where

H(x) ≡ w(ỹ(x))− w(y∗) + [B − ỹ(x)] ∆θ ≥ 0. (C.11)

Note thatH(0) > 0 andH(x) < 0 for x ≥ x̄, while on [0, x̄] we haveH ′(x) = [w′(ỹ(x))−∆θ] ỹ′(x) =

(qL/qH − 1) ∆θỹ′(x) = −(∆θ/qH)ỹ′(x). Therefore, there exists a unique x̃ ∈ (0, x̄) such that (C.6) is

non-binding —and the solution to (P) thus differs from the LCS allocation—if and only if∆θqL/qH <
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x̃. Equivalently, the LCS allocation is the unique solution to (P), and therefore interim effi cient, if

and only if qL/(1−qL) ≥ x̃/∆θ ≡ q̃L/(1−q̃L), hence the result. For small∆θ it is easily verified from

H(x̃) ≡ 0 and w′(ỹ(x)) = −x (implying ỹ′(x) = −1/w′′(ỹ(x))) that −x̃2/w′′(y∗) ≈ 2 (B − y∗) ∆θ,

so that q̃L ≈ 1− χ
√

∆θ, where 1/χ ≡
√
−2w”(y∗) (y∗ −B). �

Proof of Proposition 2. To complete the proof of Results (1) and (2), it just remains to show
that: (a) If the LCS allocation is interim effi cient, it is a competitive equilibrium; (b) It is then the

unique one. We shall also prove here that: (c) If the LCS allocation is not interim effi cient, there

exists no competitive equilibrium in pure strategies.

Claim 2 In any competitive equilibrium, the utilities (UL, UH) must satisfy

UL ≥ U cL = USIL ≡ w(y∗) + θLB, (C.12)

UH ≥ U cH ≡ w(ycH) + θHB, (C.13)

Proof. If UL < U cL, a firm could offer the single contract (y = y∗, z = zcL − ε) for ε small,
attracting and making a profit ε on type θL (perhaps also attracting the more profitable type θH).

Similarly, if UH < U cH , it could offer the incentive-compatible menu {(y∗, zcL − ε), (ycH , z
c
H − ε)}

thereby attracting and making a profit ε on type θH (perhaps also attracting and making zero

profit on type θL).

Claim 3 If an allocation Pareto dominates (in the interim-effi ciency sense) the least-cost separat-
ing one, it must involve a cross-subsidy from high to low types, meaning that

w(yH) +BθH − UH > 0 > w(yL) +BθL − UL, (C.14)

Proof. If UL ≤ w(yL) + θLB, then UL ≥ U cL requires that y = y∗ and UL = w(yL) + θLB;

the break-even condition then requires that w(yH) + θHB ≥ UH , and Pareto-dominance that

UH > U cH . Therefore w(yH)+θHB > U cH = UL+yH∆θ = w(y∗)+BθL+yH∆θ, or finally w(yH) <

w(y∗)− (B − yH) ∆θ. By (22) this means yH > ycH , but then w(yH) + θHB < w(ycH) + θHB = U cH ,

a contradiction. Thus, w(yL) + BθL − UL < 0, meaning that low types get more than the total

surplus they generate. For the employer to break even, it must be that high types get strictly less,

w(yH) +BθH − UH > 0.

We are now ready to establish the properties (a)-(c) listed above, and thereby complete the

proof of Results (1) and (2) in Proposition 2.

(a) Suppose that the LCS allocation, defined by (18)-(22), is offered by all firms. Could another

one come in and offer a different set of contracts, leading to new utilities (UL, UH) and a strictly

positive profit? First, note that we can without loss of generality assume that UL ≥ U cL : if

UL < U cL and UH is indeed selected (with positive probability) by type H, then (U cL , UH) is

incentive-compatible. By offering U cL to L types (via their symmetric-information allocation), the

deviating firm does not alter its profitability. Second, if UH < U cH , the deviating employer does
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not attract type H; since it cannot make money on type L while providing UL ≥ U cL, the deviation
is not profitable. Finally, suppose that UL ≥ U cL and UH ≥ U cH . If at least one inequality is strict,
then interim effi ciency of the LCS allocation implies that the deviating firm loses money. If both

are equalities, let us specify (for instance) that both types workers, being indifferent, do not select

the deviating firm.

(b) By (C.12)-(C.13), in any equilibrium both types must be no worse off than in the LCS allo-

cation, and similarly for the firm, which must make non-negative profits. If any of these inequalities

is strict there is Pareto dominance, so when the LCS allocation is interim effi cient, they must all

be equalities, giving the LCS allocation as the unique solution.

(c) Suppose now that LCS allocation is not interim effi cient. The contract that solves (P)

is then such that yH = ỹ(x), yL = y∗, UL > U cL (equation (C.6) is not binding) and UH > U cH
(since the LCS does not solve (P)). A firm can then offer a contract with the same yH and yL
but reducing both UH and UL by the same small amount, resulting in positive profits; the LCS

allocation is thus not an equilibrium. Suppose now that some other allocation, with utilities UL
and UH , is an equilibrium. As seen in (b), it would have to Pareto-dominate the LCS allocation,

which by Claim 3 implies:
UL ≥ UH − yH∆θ,

w(yH) +BθH − UH > 0.

Consider now a deviating employer offering a single contract, aimed at the high type: y′H = yH + ε

and U ′H = UH + (ε∆θ)/2 < w(y′H) + BθH . The low type does not take it up, as it would yield

UL = U cL − (ε∆θ)/2. The high type clearly does, leading to a positive profit for the deviator.‖

The only part of Proposition 2 remaining to prove are the comparative static results. Differen-

tiating (22) and (24) with respect to ∆θ yields

∂ycH
∂∆θ

=
B − ycH

∆θ − wy(ycH ;A,B)
> 0,

∂Lc

∂∆θ
= −qHwy(ymH ;A,B)

∂ycH
∂∆θ

> 0. (C.15)

Turning next to A,

−∆θ
∂ycH
∂A

= wA(y∗;A,B)− wA(ycH ;A,B) + wy(y
∗;A,B)

∂y∗

∂A
− wy(ycH ;A,B)

∂ycH
∂A

= a(y∗)− a(ycH)− wy(ycH ;A,B)
∂ycH
∂A
⇒

∂ycH
∂A

=
a(ycH)− a(y∗)

∆θ − wy(ycH ;A,B)
< 0 < −qH∆

∂ycH
∂A

=
∂Lc

∂A
. (C.16)

Again there is a direct and an indirect effect of A on Lc, but now the direct one always dominates.

For B, in contrast, the ambiguity remains

∆θ −∆θ
∂ycH
∂B

= wB(y∗;A,B)− wB(ycH ;A,B) + wy(y
∗;A,B)

∂y∗

∂B
− wy(ycH ;A,B)

∂ycH
∂B

= b(y∗)− b(ycH)− wy(ycH ;A,B)
∂ycH
∂B
⇒
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∂ycH
∂B

=
∆θ + b(ycH)− b(y∗)
∆θ − wy(ycH ;A,B)

> 0, (C.17)

1

qH∆θ

∂Lc

∂B
= 1− ∂ycH

∂B
=
−wy(ycH ;A,B)− b(ycH) + b(y∗)

∆θ − wy(ycH ;A,B)
. (C.18)

In the quadratic case, Lc is independent of B and the last term thus equal to zero; see (A.9). �

Proof of Proposition 4. We solve for the symmetric equilibrium under the assumption that

market shares are always interior, and thus given by (31). In Appendix D we verify that individual

deviations to corner solutions (one firm grabbing the whole market for some worker type, or on the

contrary dropping them altogether) can indeed be excluded.

To characterize the symmetric solution to (32)-(35), we distinguish three regions.

Region I. Suppose first that the low type’s individual rationality constraint is not binding,

UL > Ū, so that ν = 0.

Lemma 3 If ν = 0, then µH = 0 ≤ µL and yL = y∗ ≤ yH.

Proof. (i) If µH = µL = 0, then yH = yL = y∗ by (38)-(39), so (33)-(34) imply that UH −UL =

y∗∆θ. Next, from (36)-(37) we havemH−mL = t−mL = 0, whereasmH−mL ≡ B∆θ−(UH−UL) =

(B − y∗)∆θ > 0, a contradiction.

(ii) If µH > 0 = µL condition (39) implies w
′(yL) > 0, hence yL < y∗, and condition (38)

yH = y∗. Moreover, (36)-(37) and µH > µL require that mH < t < mL. However,

mH −mL = w(y∗)− w(yL) + (B − yL)∆θ > 0,

a contradiction. We are thus left with µH = 0 < µL, which implies yL = y∗ < yH by (39) and (38)

respectively.

Let us now derive and characterize yH as a function of t. We can rewrite (38) as

tqHw
′(yH) = −µL∆θ = −qL(mL − t)∆θ. (C.19)

Combining (36)-(37) and recalling that mi ≡ w(yi) + θiB − Ui yields

UL + t = qH [w(yH) + θHB − (UH − UL)] + qL [w(y∗) + θLB]

= qH [w(yH) + θHB − yH∆θ] + qL [w(y∗) + θLB] , (C.20)

where the second equality reflects the fact that (33) is an equality, since µL > 0. Therefore:

mL − t = w(y∗) + θLB − UL − t
= w(y∗) + θLB − qL [w(y∗) + θLB]− qH [w(yH) + θHB − yH∆θ]

= qH [w(y∗)− w(yH)− (B − yH)∆θ] (C.21)
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Substituting into (C.19) yields

Φ(yH ; t) ≡ w(yH)− w(y∗) + (B − yH)∆θ +
tw′(yH)

qL∆θ
= 0. (C.22)

The following lemma characterizes the equilibrium value of yH over Region I, denoted ŷIH(t).

Lemma 4 For any t ≥ 0 there exists a unique ŷIH(t) ∈ (y∗, B) to (C.22). It is strictly decreasing

in t, starting from the perfectly competitive value ŷIH(0) = ycH .

Proof. The function Φ(y; t) is strictly decreasing in y on [y∗, B), with Φ(y∗) > 0 > Φ(B),

hence existence and uniqueness. Strict monotonicity then follows from the fact that Φ is strictly

decreasing in t, while setting t = 0 in (C.22) shows that ŷIH(0) must equal ycH , defined in (22) as

the unique solution to

w(y∗)− w(ycH) = (B − ycH)∆θ.

It only remains to verify that the solution ŷIH(t) is consistent with the initial assumption that ν = 0,

or equivalently UL > Ū. By (C.20), we have for all yH

UL + t = qH [w(yH) + θHB − yH∆θ] + qL [w(y∗) + θLB]

= w(y∗) + θLB + qH [(B − yH) ∆θ + w(yH)− w(y∗)] . �

For yH = ŷIH(t), the corresponding value of UL is strictly above Ū if and only if ψ(t) > Ū + t,

where we define for all t:

ψ(t) ≡ w(y∗) + θLB + qH
[(
B − ŷIH(t)

)
∆θ − w(y∗) + w(ŷIH(t))

]
. (C.23)

Lemma 5 There exists a unique t1 > 0 such that ψ(t) ≥ Ū + t if and only if t ≤ t1. On [0, t1], the

low type’s utility UL is strictly decreasing in t, reaching Ū at t1.

Proof. At t = 0 the bracketed term is zero by definition of ŷIH(0) = ycH , so ψ(0) = w(y∗)+θLB

> Ū by (16), which stated that a monopsonist hires both types, and limt→+∞
[
ψ(t)− Ū − t

]
= −∞,

there exists at least one solution to ψ(t) = Ū + t. To show that it is unique and the monotonicity

of UL, we establish that, ψ′(t) < 1 for all t > 0. From (C.22) and (C.23), this means that

qH
[
∆θ − w′(ŷH)

]( −w′(ŷH)/qL∆θ

∆θ − w′(ŷH)− tw′′(ŷH)/qL∆θ

)
< 1 ⇐⇒

qH
[
∆θ − w′(ŷH)

] (
−w′(ŷH)/qL∆θ

)
< ∆θ − w′(ŷH)− tw′′(ŷH)/qL∆θ ⇐⇒

qH
[
∆θ − w′(ŷH)

] (
−w′(ŷH)

)
< qL∆θ

[
∆θ − w′(ŷH)

]
− tw′′(ŷH) ⇐⇒

tw
′′
(ŷH) <

[
∆θ − w′(ŷH)

] [
qHw

′(ŷH) + qL∆θ
]

where we abbreviated ŷIH(t) as ŷH . In the last expression, the left-hand side is always non-negative,

whereas on the right hand side y∗ < ŷH < ŷcH implies that w′(ŷH) < 0 and qHw′(ŷH) + qL∆θ >

qHw
′(ŷcH) + qL∆θ > 0, by (23).
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In summary, Region I consists of the interval [0, t1], where t1 is uniquely defined by ψ(t1) = t1.

Over that interval, yL = y∗ while yH = ŷIH(t) is strictly decreasing in t, and therefore so is the high

type’s relative rent, UH −UL = ŷIH(t)∆θ. The low type’s utility level UL need not be declining, but

its starts at a positive value and reaches Ū exactly at t1.

For t ≥ t1, the constraint UL ≥ Ū is binding. Recalling that µHµL must always equal zero,

we distinguish two subregions, depending on whether µH = 0 (Region II) or µL = 0 (Region III),

and show that these are two intervals, respectively [t1, t2] and [t2,+∞), with t1 < t2. Thus, inside

Region II the low type’s incentive constraint is binding but not the high type’s (µL > 0 = µH for

t ∈ (t1, t2)), whereas inside Region 2 it is the reverse (µH > 0 = µL for t > t2).

Region II. Consider first the values of t where µH = 0 < µL. As before, this implies that

yL = y∗ < yH and UH − UL = yH∆θ, or UH = Ū + yH∆θ since UL = Ū . Therefore:

µL = qH(mH − t) = qH [w(yH) + θHB − UH − t] = qH
[
w(yH) + θHB − yH∆θ − Ū − t

]
. (C.24)

Substituting into condition (38), the latter becomes

Γ(yH ; t) ≡ w(yH) + θHB − yH∆θ − Ū − t+
tw′(yH)

∆θ
= 0. (C.25)

On the interval [y∗, B), the function Γ(y; t) is strictly decreasing in yH and t, with

Γ(ŷIH(t); t) ≡ w(ŷH(t)) + θHB − ŷIH(t)∆θ +
tw′(ŷIH(t))

∆θ
− Ū − t

= w(y∗) + θLB +

(
1− 1

qL

)
tw′(yIH(t1))

∆θ
− Ū − t

= w(y∗) +BθL − t
(

1 +
qH
qL

w′(yH)

∆θ

)
− Ū . (C.26)

At t = t1, substituting (C.22) into (C.23) yields Γ(ŷIH(t1); t1) = 0. Furthermore, as t rises above t1,

ŷIH(t) decreases, so w′(ŷIH(t)) increases. Since

qL∆θ + qHw
′(ŷH(t)) > qL∆θ + qHw

′(ŷH(0)) = qL∆θ + qHw
′(ycH) > 0

by (23), t
[
qL∆θ + qHw

′(ŷIH(t))
]
is also increasing in t, implying that Γ(ŷIH(t); t) is decreasing in t

and therefore negative over (t1,+∞). Next, observe that Γ(y∗; t) = w(y∗)+θH(B−y∗)+θLy
∗−Ū−t.

Define therefore

t2 ≡ w(y∗) + θH(B − y∗) + θLy
∗ − Ū , (C.27)

and note that

t1 = w(y∗) + θLB + qH
[(
B − ŷIH(t1)

)
∆θ − w(y∗) + w(ŷIH(t1))

]
− Ū

< w(y∗) + θLB + qH
(
B − ŷIH(t1)

)
∆θ − Ū

< w(y∗) + θLB + (B − y∗) ∆θ − Ū = t2.
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Lemma 6 For all t ∈ [t1, t2], there exists a unique ŷIIH (t) ∈ [y∗, ŷIH(t1))] such that Γ(ŷIIH (t); t) = 0.

Furthermore, ŷIIH (t) is strictly decreasing in t, starting at ŷIIH (t1) = ŷ(t1) and reaching y∗ at t = t2.

For all t > t2, Γ(yH ; t) < 0 over all yH ≥ y∗.

Proof. For t ∈ [t1, t2] we have shown that Γ(ŷH(t1); t) ≤ 0 ≤ Γ(y∗; t), with the first equality

strict except at t1 and the second one strict except at t2. Since Γ(y; t) is strictly decreasing in yH and

t, the claimed results follow. The fact that on (t1, t2] the graph of ŷIIH (t) lies strictly below that of

ŷIH(t) also means that if there is a kink between the two curves at t1 it is a convex one, as illustrated

on Figure III. And indeed, differentiating (C.22) and (C.25), we have−
(
ŷIH
)′

(t1) < −
(
ŷIIH
)′

(t1) if

and only if

− −w′
qL∆θ(∆θ − w′)− tw′′ <

∆θ − w′
∆θ(∆θ − w′)− tw′′ ) ⇐⇒

qL∆θ

(
∆θ

−w′ + 1

)
+ t

(
−w”

−w′

)
> ∆θ + t

(
−w”

∆θ − w′

)
⇐⇒

t (−w”)

[
1

−w′ −
1

∆θ − w′

]
>

[
qH
(
−w′

)
− qL∆θ

]
∆θ =

− (qHw
′ + qL∆θ)

−w′

t

(
−w”

−w′

)[
1

∆θ − w′

]
> −

(
qHw

′ + qL∆θ
)
.

with all derivatives evaluated at ŷIH(t1) = ŷIIH (t1). Since y∗ < ŷIH(t1) < ycH the term on the left is

positive and that on the right negative.

As to t2, note that it is the only point where µH = 0 = µL (the only intersection of Regions II

and III). Indeed, this require yH = y∗ = yL by (38)-(39) and condition (39) together with UL = Ū

then implies that t = mL = w(y∗) + θLB − y∗∆θL − Ū = t2.

Region II thus consists of the interval [t 1, t2]. Over that interval, yL = y∗ while yH = ŷIIH (t) is

strictly decreasing in t, and therefore so is the high type’s utility, UH = Ū + y∗H(t)∆θ, while the

low type’s utility remains fixed at UL = Ū . Furthermore, we can show.

Putting together Regions I and II, we shall define:

ŷH(t) =

{
ŷIH(t) for t ∈ [0, t1]

ŷIIH (t) for t ∈ [t1, t2]
. (C.28)

Region III. Inside this region, namely for t > t2, we have UL = Ū but now µH > µL = 0.

This implies that yH = y∗ > yL by (38)-(39) and UH = Ū + yL∆θ by (33). Furthermore,

µH = qH (t−mH) = qH
[
t+ Ū + yL∆θ − w(y∗)− θHB

]
Substituting into condition (39), the latter becomes

Λ(yL; t) ≡ qH
[
w(y∗) + θHB − yL∆θ − Ū − t

]
+
tqLw

′(yL)

∆θ
= 0. (C.29)
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On the interval [0, y∗], the function Λ(y; t) is strictly decreasing in yL, with

Λ(y∗; t) = qH
[
w(y∗) + θHB − y∗∆θ − Ū − t

]
= qH (t2 − t) < 0.

Recall now that the monopsony price ymL is uniquely defined by w′(ymL ) = (qH/qL) ∆θ. Therefore:

Λ(ymL ; t) = qH
[
w(y∗) + θLB − Ū + (B − ymL ∆)θ

]
> 0.

Lemma 7 For all t ≥ t2 there exists a unique ŷL(t) such that Λ(ŷL(t); t) = 0, and ymL < ŷL(t) ≤ y∗,
with equality at t = t2. Furthermore, ŷL(t) is strictly decreasing in t and limt→+∞ ŷL(t) = ymL .

Proof. Existence and uniqueness have been established. Next, ∂Λ(y; t)/∂t = qLw
′(y)/∆θ − 1.

At y = ŷL(t), this equals 1/t times

−qH
[
w(y∗) + θHB − yL∆θ − Ū − t

]
− t = −qLt− qH

[
w(y∗) + θHB − Ū − yL∆θ

]
< 0,

so the function ŷL(t) is strictly decreasing in t. Taking limits in (C.29) as t → +∞, finally, yields
as the unique solution limt→+∞ ŷL(t) = ymL .

Proof of Proposition 6. The fact that ∂UL/∂t < 0 over Region I was shown in Lemma 5. To

show the last result, note that over Region III, we have

2Π = qH [w(y∗) + θHB − ŷL∆θ] + qL[w(ŷL) + θLB]− Ū ⇒
2

qL

∂Π

∂ŷL
= w′(ŷL)− qH

qL
∆θ > w′(ŷmL )− qH

qL
∆θ = 0,

so profits fall as t declines, as was shown to be the case over Regions I and II. �

Proof of Proposition 7. The result for YH − YL was shown in the text. For performance-based
pay, we have

∂([b(yH) + θH ] yH − [b(yL) + θL] yL)

∂t
=
[
b(yH) + θH + yHb

′(yH)
] ∂yH
∂t
−
[
b(yL) + θL + yLb

′(yL)
] ∂yL
∂t

.

In Regions I and II the first term is negative and the second zero; in Region III it is the reverse.

Turning finally to fixed wages,

zH − zL = UH − UL − θHyH + θLyL − u(yH) + u(yL)

In Regions I and II, zH − zL = −θL(yH − y∗)− u(yH) + u(y∗) is decreasing in yH , hence increasing

in t. In Region III, zH − zL = (yL − y∗) θH − u(y∗) + u(yL), so the opposite holds. �

Proof of Proposition 8. Existence. Suppose that all firms offer the package (y∗, z∗ ≡ π(y∗)+

(B−y∗)θ̄). A firm deviating to (y = y∗, z) would not attract anyone if z < z∗, and attract everyone

but lose money if z > z∗. Consider therefore a deviating offer (y, z) with y < y∗, hence z > z∗

(otherwise, it will attract no one). If (y, z) is preferred to (y∗, z∗) by both types, and strictly so
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for at least one type, then it must lose money, by definition of the first best. Suppose now that

(y, z) is weakly preferred to (y∗, z∗) for one type, but strictly dominated for the other type. Since

∂2U/∂θ∂y > 0, it is the low type who will come. The deviating firm must offer them at least

U∗L = w(y∗)+Bθ̄−y∗(θ̄−θL), but then its profits are at most w(y)−w(y∗)+(y∗ −B) (θ̄−θL) < 0,

so the deviation loses money.

Uniqueness. Suppose there is another equilibrium, and denote by (yi, zi) the contract chosen in

it by type i = H,L, with resulting utility Ui. Incentive compatibility requires that UL ≥ UH−yH∆θ,

hence UH − UL ≤ yH∆θ ≤ y∗∆θ = U∗H − U∗L, where a “∗” refers to the first-best allocation. If
UH ≥ U∗H , this implies that UL ≥ U∗L, and the only such allocation is the first best. If UH < U∗H ,

a deviating firm can offer (y∗, z∗ − ε), which for ε small enough attracts all types. Regardless of
how many low types it may attract, this contract makes profits of at least εqH > 0, so the original

allocation could not have been an equilibrium. �

Proof of Proposition 9. Consider a cap at ȳ ≥ y∗, which thus binds only on high types.

Let us look for a least-cost separating equilibrium in which the two types are separated and firms

make zero profit: the low type receives USIL ≡ w(y∗) + BθL (where “SI” stands for “symmetric

information”) and the high type UH = w(ȳ) + BθH − (1 − λH)ζH , where ζH is the amount of

ineffi cient transfer he is given. The latter is given by the binding incentive-compatibility condition

U∗L = UH − (ȳ∆θ + ζH∆λ) , hence

(1− λL)ζH = (B − ȳ)∆θ − [w(y∗)− w(ȳ)] > 0, (C.30)

since the right-hand side is decreasing in ȳ ≥ y∗, and and equal to 0 at ycH . Thus, we have (“r”

stands for “regulated”)

U rH = w(y∗) +BθH −
(

1− λH
1− λL

)
(B − ȳ)∆θ − ∆λ

1− λL
[w(y∗)− w(ȳ)] (C.31)

As before, this LCS allocation is the (unique) equilibrium outcome if and only if it is interim

effi cient. To determine when that is the case, consider the following (relaxed) program:

(Pr) : max
{(0≤yi≤ȳ, 0≤ζi, Ui)}i=H,L

{UH}, subject to:

UL ≥ USIL (ν) (C.32)

UL ≥ UH − yH∆θ − ζH∆λ (ξ) (C.33)

0 ≤
∑

i=H,L

[w(yi) + θiB − (1− λi)ζi − Ui], (µ) (C.34)

Optimality clearly requires (C.34) to be binding. This in turn implies that ζL = 0 and yL = y∗,

otherwise (C.34) can be relaxed without affecting any other constraint. It also cannot be that

yH < ȳ, otherwise raising it slightly relaxes (C.34) while not violating (C.33), since −qHw′(yH) >

−qHw′(y∗) > yH∆θ, by (23). Next, (C.33) must also be binding, otherwise one can find δUH

> 0 > δUL that remain feasible, violating optimality.

48



Suppose now that (C.32) is not binding, so UL > USIL , and ν = 0. The first-order conditions

in UH and UL are then respectively 1 − µqH − ξ = 0 and −µqL + ξ = 0, hence µ = 1 and ξ = qL.

Finally, the optimality condition in ζH is qL∆λ− (1− λH)qH ≤ 0. Therefore, if

qL(∆λ) > (1− λH)qH , (C.35)

it must be that the constraint UL = USIL is in fact binding. The LCS allocation is then interim

effi cient, and therefore the unique equilibrium.

Finally, we consider how welfare varies with the bonus cap ȳ ∈ [y∗, ycH ]. Profits always equal

zero and low types always receive their symmetric-information utility USIL . As to high types, they

now achieve U rH , given by (C.31). As a function of ȳ, the right-hand side of that equation is strictly

concave on [y∗, ycH ], with a derivative that is strictly positive at y∗ and at ycH (by (40)). Therefore,

U rH is strictly increasing in y and maximized at ycH , where the constraint ceases to bind. �

Proof of Proposition 10. Given (41), the cap Ȳ does not constrain low types from receiving

their full symmetric-equilbrium allocation, USIL = w(y∗)+BθL.We look for a zero-profit, least-cost

separating allocation, now satisfying

π(yH) +BθH + yHb(yH) = Y + ζH , (C.36)

UH − yH∆θ − ζH∆λ = USIL . (C.37)

The first condition implies that

UH = w(yH) +BθH − (1− λH)ζH = u(yH)− yHb(yH) + Y + λHζH , (C.38)

and the second thus becomes

USIL = u(yH)− yHb(yH) + Y + λLζH − yH∆θ. (C.39)

Adding (C.36) to this last equation and substituting in U∗L yields

w(y∗) +BθL + Y + ζH = w(yH) +BθH − yH∆θ + Y + λLζH ⇐⇒
w(y∗)− w(yH) = (B − yH)∆θ − (1− λL)ζH

= (B − yH)∆θ − (1− λL)
[
π(yH) + yHb(yH) +BθH − Y

]
⇐⇒

w(y∗) = w(yH) + (B − yH)∆θ − (1− λL)
[
Aa(yH) +Bb(yH) +BθH − Y

]
,

where the next-to-last equation uses (C.36) to substitute for ζH and the last one follows from

the definition of π. Denoting ς(yH) the right-hand side of this last equation, (10) implies that

ς ′(yH) = w′(yH)− (1− λL) [w′(yH) + yHb
′(yH)]−∆θ < 0 for yH ≥ y∗, while (22) and (41) ensure

that ς(y∗) > w(y∗) ≥ ς(ycH). Therefore, the equation has a unique solution yrH ∈ (y∗ycH ], which is

easily seen to be increasing in Ȳ .

The next step consists once again in checking whether this allocation is interim effi cient, and

thus the equilibrium outcome. Consider therefore the following (relaxed) program:
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(Pr) : max
{(0≤yi≤ȳ, 0≤ζi, Ui)}i=H,L

{UH}, subject to:

UL ≥ USIL (ν) (C.40)

UL ≥ UH − yH∆θ − ζH∆θ (ξ) (C.41)

UH ≤ u(yH)− yHb(yH) + Y + λHζH (κ) (C.42)

0 ≤
∑

i=H,L

[w(yi) + θiB − (1− λi)ζi − Ui], (µ) (C.43)

For the LCS allocation not to be interim effi cient, the optimum must have UL > USIL , hence ν = 0.

Solving the first-order conditions in UH and UL then yields ξ = qLµ and κ = 1− µ. Furthermore,
the first-order condition with respect to ζH is

λH(1− µ) + qLµ∆λ− qHµ(1− ζH) ≤ 0,

which is ruled out if qH is small enough, in which case interim effi ciency obtains.

Finally, let us examine how UH varies with Y . Equations (C.36) and (C.38) imply that

dUH = ∆θdyH + ∆λdζH = w′(yH)dyH − (1− λH)dζH

⇒ −(1− λL)dζH =
[
∆θ − w′(yH)

]
dyH

We saw earlier that yH is increasing in Ȳ , and thus naturally ζH is increasing, as firms substitute

toward the ineffi cient currency. Substituting for dζH into the first equation, we have:

∂UH
∂Ȳ

=

(
w′(yH)

∆θ
+

1− λH
∆λ

)(
∆θ∆λ

1− λL

)
∂yH
∂Ȳ

. (C.44)

Under condition (C.35), the first term in brackets is positive, since w′(yH)/(∆θ) > w′(ycH)/(∆θ).

Therefore, as Ȳ is reduced, UH decreases. Since low types’utility is unaffected and profits remain

equal to zero, the result follows. �

Proof of Proposition 11. Let us adopt the convention that z and y are net compensations.
In particular, y is still the effective power of the incentive scheme. Profit on type i = H,L under

contract (y, z) is then

Πi = Aa(y) +B[θi + b(y)]− z + y[θi + b(y)]

1− τ , (C.45)

while the expression for Ui is unchanged. Furthermore,

Ui + (1− τ)Πi = [(1− τ)(Aa(y) +B[θi + b(y)]− [C(a(y), b(y))− va(y)]

≡ ŵ(y) + (1− τ)Bθi. (C.46)

Let y∗(τ) ≤ y∗ be the bilaterally effi cient power of incentives: y∗(τ) = arg max{ŵ(y)}. The LCS
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equilibrium has yL = y∗(τ) and yH given by

ŵ(y∗(τ))− ŵ(yH) = ∆θ [(1− τ)B − yH ]

Welfare W is equal to qHw(yH) + qLw(yL) +Bθ, and so

dW

dτ
|τ=0 = qLw

′(yL)
dy∗

dτ
+ qHw

′(yH)
dyH
dτ

= qHw
′(yH)

dyH
dτ

. (C.47)

Finally,

ŵ′(yH) = w′(yH)− τ d

dyH
[Aa(yH) +Bb(yH)] ' w′(yH)⇒

dW

dτ
|τ=0 ' − B∆θ

∆θ − w′(yH)
qHw

′(yH) > 0. � (C.48)

Lemma 8 The first-best solution defined by (44) satisfies yA∗ < A and yB∗ < B.

Proof. The first-order conditions (44) take the form

(A− yA∗)(∂a/∂yA∗) + (B − yB∗)
(
∂b/∂yA

)
= ryA∗σ2

A/2,

(A− yA∗)(∂a/∂yB∗) + (B − yB∗)
(
∂b/∂yB

)
= ryB∗σ2

B/2,

with all derivatives evaluated at (yA∗, yB∗). Let D ≡ (∂a/∂yA)
(
∂b/∂yB

)
− (∂a/∂yB)

(
∂b/∂yA

)
,

which is easily seen to equal 1/[CaaCbb − (Cab)
2] > 0 (this holds for any (yA, yB)). We then have

A− yA∗ =
1

D

[
(∂b/∂yB)

(
ryA∗σ2

A/2
)
− (∂b/∂yA)

(
ryB∗σ2

B/2
)]
> 0,

B − yB∗ =
1

D

[
(∂a/∂yA)

(
ryB∗σ2

B/2
)
− (∂a/∂yB)

(
ryA∗σ2

A/2
)]
> 0,

hence the result.

Proof of Lemma 2. The LCS allocation is interim effi cient if and only if it solves the relaxed

program

max{UH}, subject to
UL ≥ UH − yAH∆θA − yBH∆θB,∑
i=H,L

qi [w(yi) +Di − Ui] ≥ 0,

UL ≥ USIL .

The solution to this program must satisfy yL = y∗. If the LCS allocation is not interim effi cient, the

solution must be such that UL > USIL , implying ν = 0. Using the zero-profit condition, substituting

UL, using the incentive-compatibility condition and taking derivatives yields:

1

∆θA
∂w(yH)

∂yAH
=

1

∆θB
∂w(yH)

∂yBH
= − qL

qH
. (C.49)
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Letting σ denote the “subsidy”from the H- to the L-type, the above program can be rewritten as:

(Pr) : max{UH}, subject to
UH ≤ w(yH) +DH − qL

qH
σ

USIL + σ ≥ UH − yH ·∆θ

σ ≥ 0

where yH ·∆θ denotes the scalar product of yH ≡
(
yAH , y

B
H

)
and ∆θ ≡

(
∆θA,∆θB

)
. Note first that

the first two constraints must both be binding. Indeed, denoting λi the Lagrange multiplier on the i-

th constraint, the first-order conditions are 1−λ1−λ2 = 0 for UH , λ1∇w(yH)+λ2∆θ = 0 for yH and

λ3−λ1qL/qH+λ2 = 0 for σ. The first two clearly exclude λ1 = 0. If λ2 = 0, then yH = y∗ and λ3 > 0,

implying σ = 0; but then the second constraint becomes w(y∗)+DL = USIL ≥ w(y∗)+DH−y∗ ·∆θ,
hence 0 ≥ DH −DL − y∗ ·∆θ = (A− y∗A)∆θA + (B − y∗B)∆θB, a contradiction of Lemma 8.

Next, eliminating σ from the binding constraints shows that yH solves max{w(yH) + `∆θ · yH},
where ` ≡ qL/qH ∈ (0,∞) is the likelihood ratio. Consider any two such ratios ` and ˆ̀ and the

corresponding optima yH and ŷH for this last program; if ˆ̀> `, then

w(yH) ≥ w(ŷH) + `∆θ · (ŷH − yH) ,

w(ŷH) ≥ w(yH) + ˆ̀∆θ · (yH − ŷH) .

Adding up these inequalities yields ∆θ · (ŷH − yH) ≥ 0, which in turn implies that w(yH) ≥
w(ŷH). Observe now from (47) that the LCS allocation corresponds to an interior solution to

max{w(yH) + κc∆θ · yH}. Consider now any ` > κc and the corresponding solution yH . We have

w(yH) ≤ w (ycH) and so

w(yH) +DH − `σ ≤ w (ycH) +DH = U cH ,

with strict inequality if σ > 0. This last case is impossible, however, since type H’s utility from the

relaxed program cannot be lower than U cH . Therefore, σ = 0 and yH = ycH : the LCS allocation is

interim effi cient. Conversely, let ` < κc; we have

∂

∂yH
[w(yH) + `∆θ · yH ]yH=ycH

= (l − κc) ∆θ,

with ∆θA ≥ 0 and ∆θB > 0. Since yH maximizes the expression in brackets, it must be that

yAH ≤ yAcH and yBH < yAcH , hence ∆θ · (ycH − yH) > 0. By the same properties shown above, it follows

that w(yH) > w(ycH). If σ = 0, the two binding constraints in (Pr) then imply that

UH = USIL + yH ·∆θ < USIL + ycH ·∆θ = U cH ,

UH = w(yH) +DH > w(ycH) +DH = U cH ,

another contradiction. Therefore σ must be positive after all, and interim effi ciency fails. �
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Appendix D: Additional Proofs

D.1 Bounds on Ū ensuring non-negative equilibrium wages.

We make explicit here the restrictions on Ū ensuring that: (i) zH(t) be non negative, for all t;

(ii) 34firms want to keep low types one board. We then provide suffi cient conditions for all of them

to hold jointly. In Region III, zH(t) = Ū + ŷL(t)∆θ− u(y∗)− θHy∗ is decreasing, so it suffi ces that
limt→+∞ zH(t) = zmH ≥ 0. In Regions I and II, zH(t) = UL(t) − θLŷH(t) − u(ŷH(t)); its variations

with t are ambiguous, but since U(t) is (weakly) declining toward Ū and ŷH(t) strictly decreasing

from ŷcH(0) = ycH , it is bounded below by Ū − θLycH − u(ycH). Combining this with condition (16),

we therefore require:

Ūmin ≡ max {u(y∗) + θHy
∗ − ymL ∆θ, u(ycH) + θLy

c
H} ≤ Ū ≤ w(ymL ) + θLB− (qH/qL)ymL ∆θ ≡ Ūmax.

(D.1)

This defines a nonempty interval for Ū as long as Ūmin < Ūmax, which can be insured in at least

two ways. First, for qL close enough to 1 (thus also satisfying the requirement of (30)) ymL is close

to y∗, so Ūmin ≈ u(ycH) + θLy
c
H < w(ycH) + θLy

c
H < w(y∗) + θLB ≈ Ūmax, ensuring the result.

Alternatively, one can slightly modify firms’technology so that the revenue generated by each

worker of type θ becomes instead Aa + B(θ + b) + d̄, where d̄ is a constant reflecting some other

“basic” activity, performed at a fixed (e.g., perfectly monitored) level by all employees, and for

which their compensation is therefore part of the fixed wage z. This augments total surplus w(y)

by the same amount d̄, which can be made large enough to ensure that Ūmin < Ūmax. �

D.2 General optimization program

Let Ĉ ≡ (ÛH , ÛL, ŷH , ŷL) denote the (presumptive) symmetric-equilibrium strategies and pay-

offs, given in Proposition 4, and played by the other firm. For all u ∈ R, let X (u) ≡ min {max {u, 0} , 2t} .
The firm’s general problem is to choose (UH , UL, yH , yL) to solve the program:

max
{
qHX (UH + t− ÛH)[w(yH) + θHB − UH

+qL X (UL + t− ÛL)1{UL≥Ū}[w(yL) + θLB − UL]
}

(D.2)

subject to:
UH ≥ UL + yL∆θ (D.3)

UL ≥ UH − yH∆θ (D.4)

Note that the objective function (D.2) is not everywhere differentiable, nor (as we shall see), is it

globally concave. Note also that if either UL ≤ ÛL − t or UL < Ū, the firm employs zero (measure

of) low types, in which case it clearly must sell to a positive measure of H agents, requiring

UH > max{ÛH − t, Ū}. We first rule out such “exclusion” of low-skill workers, and likewise for
high-skill ones. We then show that is also not optimal to “corner”the market on either type.

34Recall that zL(t) ≥ zH(t) everywhere by incentive compatibility. As to the bonus rates yi(t), they all are bounded
below by ymL , which is positive since we have assumed that w

′(0) > (qH/qL)∆θ.
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D.2.1 No exclusion and no cornering

Lemma 9 There exists q̄L ∈ [q∗L, 1), independent of t, such that, for all qL ≥ q̄L, it is strictly

suboptimal not to employ a positive measure of L-type agents. In particular, UL ≥ Ū .

Proof. Selling only to H agents under some contract (yH , UH) is less profitable than sticking

to the symmetric strategy (ŷH , ÛH) if

qHπH ≡ qHχ(UH − ÛH + t) [w(yH) +BθH − UH ]

≤ qHt[w(ŷH) +BθH − ÛH ] + qLt[w(ŷL) +BθL − ÛL] ≡ qH π̂H + qLπ̂L ≡ π̂. (D.5)

For any t > 0, π̂L > 0, so the inequality is satisfied for qH low enough, or equivalently qL/qH large

enough. To ensure a lower bound independent of t, however, the ratio (πH − π̂H) /π̂L must remain

bounded above as t tends to zero, even though limt→0 π̂L = 0. We will in fact show a stronger

property, namely that πH(t) < π̂H(t) for t small enough.

Observe first that to exclude the L types, it must be that UL ≤ max{Ū , ÛL − t}. For all t < t1

we have ÛL > Ū , so for small t the relevant constraint is UL ≤ ÛL − t . The firm thus solves:

max
{
χ(UH − ÛH + t) [w(yH) +BθH − UH ]

}
, subject to:

UH ≥ UL + yL∆θ (µH)

UL ≥ UH − yH∆θ (µL)

UL ≤ ÛL − t (ϕ)

yL ≥ 0 (ψ).

To have a positive share of the H types it must be that UH − ÛH > −t > UL − ÛL, therefore
UH − UL > ÛH − ÛL = ŷH∆θ, implying yH > ŷH . Consider now the first-order conditions:

−1 ≤ µL − µH ≤ w(yH) +BθH − 2UH + ÛH − t,
with equality for UH − ÛH > t and UH − ÛH < t, respectively;

−µH + µL − ϕ = 0,

(UH − ÛH + t)w′(yH) + µL∆θ = 0,

ψ − µH∆θ = 0.

If µL = 0, the third condition implies that yH = y∗ ≤ ŷH , a contradiction. Therefore µL > 0,

so that UH − UL = yH∆θ, with ŷH < yH . Next, it cannot be that ψ > 0, otherwise yL = 0 and

UH−UL = yL∆θ so yH = yL = 0, another contradiction. Hence µH = 0, so ϕ = µL > 0, UL = ÛL−t
and therefore UH−ÛH+t = (yH− ŷt)∆θ, which furthermore cannot exceed 2t, since −1 < µL−µH .
Next, eliminating µL,

w(yH) +BθH − 2UH + ÛH − t+ (UH − ÛH + t)w′(yH)/∆θ ≥ 0, (D.6)

with equality for UH − ÛH < t.
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We also have, from (36) and (38)-(39) with ŷL = y∗, a similar condition (with equality) for ŷH :

w(ŷH) +BθH − ÛH − t+ tw′(ŷH)/∆θ = 0. (D.7)

Subtracting and replacing UH − ÛH + t by (yH − ŷt)∆θ yields:

Υ(yH ; ŷH , t) ≡ w(yH)− w(ŷH)− 2 [(yH − ŷH)∆θ − t]
+(yH − ŷH)w′(yH)− tw′(ŷH)/∆θ ≥ 0, (D.8)

with equality for UH−ÛH < t. If cannot be that UH−ÛH = t, moreover, otherwise (yH−ŷt)∆θ = 2t

and Υ(yH ; ŷH , t) = w(yH) − w(ŷH) − 2t + tw′(ŷH)/∆θ < 0, a contradiction. Therefore (D.8) is

an equality, and since ∂Υ/∂yH = 2w′(yH) − 2∆θ + yHw
′′(yH) < 0, it uniquely defines yH as a

function yH = Y (ŷH , t). Taken now as a function of t, yH(t) = Y (ŷH(t), t) tends to Y (ŷH(0), 0) =

ŷH(0) = ycH , as can be seen from taking limits in (D.8) as an equality. A Taylor expansion of

Υ(yH(t); ŷH(t), t) = 0 then yields

2
[
∆θ − w′(ycH)

]
(yH(t)− ŷH(t)) = t

[
2− w′(ycH)/∆θ

]
+O(t2)⇒

yH(t)− ŷH(t) = ωt+O(t2), (D.9)

where ω ≡ [2− w′(ycH)/∆θ] / [2∆θ − 2w′(ycH)] ∈ (0, 1). Turning now to the associated profit mar-

gins, we have from (D.7) and (D.6) (now known to be an equality) respectively,

w(ŷH) +BθH − ÛH = t[1− w′(ŷH)/∆θ],

w(yH) +BθH − UH = (UH − ÛH + t)[1− w′(yH)/∆θ].

Consequently, as t→ 0,

πH(t)

π̂H(t)
=

(UH − ÛH + t)2

t2
1− w′(yH(t))/∆θ

1− w′(ŷH(t))/∆θ
→ (ω∆θ)2 < 1,

which concludes the proof.

We now rule out excluding high-skill workers.

Lemma 10 It is always strictly suboptimal not to employ a positive measure of H-type agents.

Proof. If a firm, say Firm 0, employs no H agent it must sell to a positive measure of L agents

and reap strictly positive profits from their contract (yL, UL). Furthermore, the optimal level of yL
is clearly y∗. Thus, it must be that Ū ≤ UL and ÛL − t < UL < w(y∗) +BθL.

In Region III, let the firm deviate and offer the single contract (yL, UL). By taking it, an agent

of type H gets ŨH = UL + y∗∆θ > ÛL− t+ y∗∆θ ≥ ÛH − t, so it is preferred by a positive measure
of them to going to work for Firm 1, as well as to the outside option (ŨH > Ū). Each of these

workers then generates profits w(y∗)+BθH− ŨH = w(y∗)+BθL−UL+(B−y∗)∆θ > 0. Therefore,

a contract excluding H workers could not in fact have been optimal.
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In Regions I and II, we will show that there always exists a contract (ỹH , ŨH) that can be offered

alongside with (yL, UL) so as to attract a positive measure of H types, not be strictly preferred

by any L type, and generate positive profits. Note first that if UL ≥ ÛL, we can simply choose

(ỹH , ŨH) = (ŷH , ÛH), that is, the same contract as offered by Firm 1. Indeed, since UL ≥ ÛL ≥
ÛH− ŷH∆θ = ŨH− ỹH∆θ, the L types employed at Firm 0 (weakly) prefer their original contract,

(yL, UL). For the H types, clearly ŨH = ÛH > Ū and getting it from Firm 0 is preferable to getting

it from Firm 1 for all such agents located at x < 1/2. Such a deviation is thus strictly profitable.

Suppose from now on that UL < ÛL and consider the contract (ỹH , ŨH) ≡ (ŷH , UL + ŷH∆θ).

The L types have no reason to switch (they are indifferent), while for the H types we have ŨH =

UL + ŷH∆θ > ÛL + ŷH∆θ− t = ÛH − t, so a positive measure of them prefer this new offer to what

they could get at Firm 1. Furthermore, since ŨH ≥ UL + y∗∆θ, they also prefer it to the L types’

contract at Firm 0. The firm can thus offer the incentive-compatible menu {(yL, UL), (ỹH , ŨH)} and
attract a positive measure of H agents, on which it makes unit profit

w(ŷH) +BθH − ŨH = w(ŷH) +BθH − ŷH∆θ − UL
> w(ŷH) +BθH − ŷH∆θ − ÛL = w(ŷH) +BθH − ÛH > 0.

The deviation is therefore profitable, which concludes the proof.

D.2.3 A key property

By Lemmas 9 and 10, at an optimum it must be that XH ≡ X (UH + t − ÛH) > 0 and

XL ≡ X (UL + t− ÛL)1{UL≥Ū} > 0. This, in turn, implies:

Lemma 11 At any optimum, it must be that either:
(i) yL = y∗ ≤ yH and UH − UL = yH∆θ, with multiplier µH = 0 on (D.3), or

(ii) yL ≤ y∗ = yH and UH − UL = yL∆θ, with multiplier µL = 0 on (D.4).

Proof. Consider the sub-problem of maximizing (D.2) over (yH , yL), while keeping (UH , UL)

and therefore (XH > 0, XL > 0) fixed. This is a differentiable and concave problem, for which the

first-order conditions are:

0 = qHXHw
′(yH) + µL∆θ, (D.10)

0 = qLXLw
′(yL)− µH∆θ + ψ. (D.11)

Once again it cannot be that µH > 0 and µL > 0, otherwise (D.3)-(D.4) and (D.10) imply that

yL = yH > y∗ and so ψ = 0, yielding a contradiction in (D.11). Suppose first that µH = 0,

implying that ψ = 0 and yL = y∗. If (D.4) were not binding, we would have µL = 0, hence

yH = y∗ = yL and UL > UH − yH∆θ = UH − yL∆θ ≥ UL, a contradiction. Thus it must be that

yH∆θ = UH −UL ≥ yL∆θ = y∗∆θ, which corresponds to case (i). If µH > 0, then (D.3) is binding

and µL must equal 0, hence yH = y∗. Furthermore, yL∆θ = UH − UL ≤ yH∆θ = y∗∆θ, which

corresponds to case (ii).
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We now show that it is also not optimal to (strictly) “corner”the market for either type, offering

more utility than needed to attract the most distant employees away from the other firm.

Lemma 12 At an optimum, XH ≡ UH + t− ÛH and XL ≡ UL + t− ÛL must both lie in (0, 2t].

Proof. The fact that XH > 0 and XL > 0 was established previously. Suppose first that

min{UH + t− ÛH , UL + t− ÛL} > 2t. Note that this implies UL > ÛL + t > Ū. The firm can then

reduce both UH and UL slightly while keeping the full market of both types, XH = XL = 1 and

not violating any constraint; this increases profits, a contradiction.

Suppose next that UH + t− ÛH ≤ 2t < UL + t− ÛL, which again implies UL > Ū ; furthermore,

one must also have UH − UL ≤ ÛH − ÛL. The chosen allocation must thus solve

max
{
qHχ(UH + t− ÛH)[w(yH) + θHB − UH ] + qL(2t)[w(yL) + θLB − UL]

}
,

subject again to (D.3)-(D.4), plus the participation constraint UL ≥ Ū , which in this particular

case is not binding. Maximizing over UL thus yields the first-order condition −2tqL − µH + µL

= 0, which must hold in addition to (D.10)-(D.11) with XL = 1. Clearly, it cannot be that µL = 0.

Therefore, µH = 0 < µL = 2tqL, implying that (D.10) becomes qH(XH/2t)w
′(yH) + qL∆θ = 0.

Furthermore, yH∆θ = UH − UL ≤ ÛH − ÛL ≤ ycH∆θ, so yH ≤ ycH . But then the interim-effi ciency

condition (23) implies that qHw′(yH) + qL∆θ > 0, a contradiction since XH ≤ 2t.

Suppose now that UL + t− ÛL ≤ 2t < UH + t− ÛH . The allocation must be a solution to

max
{
qH(2t)[w(yH) + θHB − UH ] + qLχ(UL + t− ÛL)[w(yL) + θLB − UL]

}
,

subject to (D.3)-(D.4) and the constraint UL ≥ Ū , with associated multiplier ν ≥ 0. Maximizing

over UH thus yields the first-order condition −2tqH + µH − µL = 0.This precludes µH = 0, so

µL = 0 < µH = 2tqH , yH = y∗ and qLXLw
′(yL) = 2tqH∆θ − ψ ≡ 2tqLw

′(ymL ) − ψ. If ψ > 0 then

yL = 0 < ymL , and if ψ = 0 then (XL/2t)w
′(yL) = w′(ymL ) so yL < ymL , as XL ≤ 2t. But we also

have yL∆θ = UH − UL > ÛH − ÛL > ymL ∆θ, a contradiction.

D.2.4 Proof of global optimality

The objective function in (D.14) is not globally concave, as can be seen computing the Hessian.

The proof of global optimality will therefore require several steps. First, we will show that for any

C = (UH , UL, yH , yL) to be an optimum, it must lie in either the following subspaces:

SH ≡ {(UH , UL, yH , yL) |yL = y∗ ≤ yH ≤ ycH and UH − UL = yH∆θ} , (D.12)

SL ≡ {(UH , UL, yH , yL) |yH = y∗ ≥ yL ≥ ymL and UH − UL = yL∆θ} . (D.13)

We will then show that the program is strictly concave on SH and on SL separately, which implies

that Ĉ = (ÛH , ÛL, ŷH , ŷL) achieves a maximum over all feasible allocations in the subspace to which

it belongs, namely SH for t ≤ t2 (Regions I and II), or SL for t ≥ t2 (Region III). Finally, we will
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show that the global optimum can never lie in the other subspace than the one to which Ĉ belongs,
concluding the proof.

Lemma 13 A global optimum C = (UH , UL, yH , yL) must lie in SH or in SL.

Proof. Let S′H be denote the superset of SH obtained by omitting the inequality yH ≤ ycH
from (D.12), and similarly let S′L denote the superset of SL obtained by omitting the inequality

yL ≥ ymL from (D.13). By Lemma 11, an optimum must belong to S′H or S′L. Furthermore, given no
exclusion nor strict cornering (Lemmas 9, 10 and 12), solving (D.2)-(D.4) is equivalent to solving

the smooth program

max qH(UH + t− ÛH)[w(yH) + θHB − UH ] + qL(UL + t− ÛL)[w(yL) + θLB − UL] ,(D.14)

subject to:

XH ≡ UH + t− ÛH ≤ 2t (τH)

XL ≡ UL + t− ÛL ≤ 2t (τL)

UH ≥ UL + yL∆θ (µH)

UL ≥ UH − yH∆θ (µL)

UL ≥ Ū (ν)

yL ≥ 0 (ψ).

The first-order conditions are:

qH

[
w(yH) +BθH − 2UH + ÛH − t

]
+ µH − µL − τH = 0, (D.15)

qL

[
w(yL) +BθL − 2UL + ÛL − t

]
+ µL − µH + ν − τL = 0, (D.16)

qH

(
UH − ÛH + t

)
w′(yH) + µL∆θ = 0, (D.17)

qL

(
UL − ÛL + t

)
w′(yL)− µH∆θ + ψ = 0 (D.18)

and we also know that XH > 0 and XL > 0 at an optimum.

Case A. Consider first C ∈ S′H . We have yL = y∗ (so ψ = 0) and µH = 0, so eliminating µL :

w(yH) +BθH − 2UH + ÛH − t+ (UH − ÛH + t)
w′(yH)

∆θ
− τH
qH

= 0, (D.19)

w(y∗) +BθL − 2UL + ÛL − t−
qH
qL

(UH − ÛH + t)
w′(yH)

∆θ
+

ν

qL
− τL
qL

= 0. (D.20)

Subtracting and using UH − UL = yH∆θ and ÛH − ÛL = ŷ∆θ (with ŷ = ŷH in Regions I and II

and ŷ = ŷL in Region III) yields

w(yH)− w(y∗) + (B − yH)∆θ = (yH − ŷ)∆θ + (UH − ÛH + t)

[
1− w′(yH)

∆θ

]
−(UH − ÛH + t)

[
1 +

qH
qL

w′(yH)

∆θ

]
+

ν

qL
+
τH
qH
− τL
qL
.
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Next, subtracting w(ycH)− w(y∗) + (B − ycH)∆θ = 0, we have

w(yH)− w(ycH)− (yH − ycH) ∆θ − (yH − ŷ)∆θ

= (UH − ÛH + t)

(
−1− qH

qL

)
w′(yH)

∆θ
+

ν

qL
+
τH
qH
− τL
qL
, (D.21)

or:

w(yH)− w(ycH)− (2yH − ycH − ŷ) ∆θ = (UH − ÛH + t)
−w′(yH)

qL∆θ
+

ν

qL
+
τH
qH
− τL
qL
.

If yH > ycH ≥ ŷ the left-hand side is negative, while the right-hand side is positive, since UH−UL >
ÛH − ÛL implies that UL− ÛL < UH − ÛH ≤ 2t, so τL = 0. Hence, a contradiction, from which we

conclude that yH ≤ ycH , so that C ∈ SH .

Case B. Consider now C ∈ S′L. We have yH = y∗ and µL = 0, so eliminating µH :

w(y∗) +BθH − 2UH + ÛH − t+
qL
qH

(UL − ÛL + t)
w′(yL)

∆θ
+

ψ

qH∆θ
− τH
qH

= 0, (D.22)

w(yL) +BθL − 2UL + ÛL − t− (UL − ÛL + t)
w′(yL)

∆θ
+

ν

qL
− ψ

qL∆θ
− τL
qL

= 0. (D.23)

If yL < ymL then UH − UL = yL∆θ < ŷ∆θ = ÛH − ÛL so UH − ÛH < UL − ÛL ≤ 2t, hence τH = 0.

Suppose first that UL > Ū ; then ν = 0 and from the two above equations we have

w(y∗) +BθH − 2UH + ÛH − t < 0 < w(yL) +BθL − 2UL + ÛL − t.

But:
w(y∗) +BθH − 2UH + ÛH −

[
w(yL) +BθL − 2UL + ÛL

]
= w(y∗)− w(yL) + (B − yL) ∆θ + (ŷ − yL)∆θ > 0,

a contradiction. Therefore, UL = Ū . Next, for yL < ymL we have w′(yL) > w′(ymL ) = (qH/qL) ∆θ,

hence, by (D.22):

−ψ/qH∆θ > θw(y∗) +BθH − 2UH + ÛH − t+ UL − ÛL + t

= w(y∗) +BθL − Ū + (B − yL)∆θ −
[
UH − UL − (ÛH − ÛL

]
= w(y∗) +BθL − Ū + (B − yL)∆θ + (ŷ − yL) ∆θ.

This last expression is strictly positive, however, since yL < ymL ≤ ŷ < B, where ŷ = ŷH when t is

in Region I or II and ŷ = ŷL when t is in Region III. Hence another contradiction, from which we

conclude that yL ≥ ymL , so that C ∈ SL.

Lemma 14 The objective function in (D.14) is strictly concave over SH and over SL.

In passing, note that this result implies that the symmetric solution Ĉ ≡ (ÛH , ÛL, ŷH , ŷL) always
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satisfies the local second-order conditions for a maximum of the program (D.14).35

Proof. First, over SH , the objective function becomes

φ(UH , yH) ≡ qH(UH − ÛH + t) [w(yH) + θHB − UH ]

+qL(UH − yH∆θ − ÛL + t) [w(y∗) + θLB − UH + yH∆θ] , (D.24)

for which the Hessian is

H(φ) =

[
−2 qHw

′(yH) + 2qL∆θ

qHw
′(yH) + 2qL∆θ qH(UH − ÛH + t)w′′(yH)− 2qL∆θ2

]

and its determinant equals

−q2
Hw
′(yH)2 − 4qHqLw

′(yH)∆θ − 4q2
L∆θ2 + 4qL∆θ2 − 2qHw

′′(yH)
(
UH − ÛH + t

)
= −qHw′(yH)

[
qHw

′(yH) + 4qL∆θ
]

+ 4qHqL∆θ2 − 2qHw
′′(yH)

(
UH − ÛH + t

)
,

which is positive since yH ≤ ycH implies that qHw′(yH)+4qL∆θ ≥ qHw′(ycH)+4qL∆θ > 0, by (23).

Next, over SL, the objective function becomes

φ(UL, yL) ≡ qH(UL + yL∆θ − ÛH + t)[w(y∗) + θHB − UL − yL∆θ ]

+qL(UL + t− ÛL)[w(yL) + θLB − UL], (D.25)

for which the Hessian is

H(φ) =

[
−2 qLw

′(yL)− 2qH∆θ

qLw
′(yL)− 2qH∆θ qL(UL − ÛL + t)w′′(yL)− 2qH∆θ2

]

and its determinant equals:

−q2
Lw
′(yL)2 + 4qHqLw

′(yL)∆θ − 4q2
H∆θ2 + 4qH∆θ2 − 2qLw

′′(yL)(UL − ÛL + t)

= qLw
′(yL)

[
−qLw′(yL) + 4qH∆θ

]
+ 4qHqL∆θ2 − 2qLw

′′(yL)(UL − ÛL + t),

which is positive since yL ≥ ymL implies qLw′(yL) ≤ qLw′(ymL ) < 4qH∆θ, by (10).

Proposition 20 The unique global optimum to (D.2)-(D.4) is the allocation Ĉ ≡ (ÛH , ÛL, ŷH , ŷL)

characterized in Proposition 4, which is therefore an equilibrium (the unique symmetric one) of the

game between the two firms.

Proof. By Lemmas 9 and 10, the global solution C = (UH , UL, yH , yL) to (D.2)-(D.4) is also

the global solution to (D.14) and satisfies the associated first-order condition (D.15)-(D.18), with

35This can also be shown directly, by computing the appropriate bordered Hessians, given each of the constraints
binding in Regions I, II and III respectively. The proof is available upon request.
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XH ≡ UH − ÛH + t and XL ≡ UH − ÛH + t both in (0, 2t]. By Proposition4, the symmetric

allocation Ĉ ≡ (ÛH , ÛL, ŷH , ŷL) solves these first-order conditions (with X̂H = X̂L = t) and is such

that Ĉ ∈ SH when t is in Regions I and II, while Ĉ ∈ SL when t is in Region III. Furthermore, by
Lemma 14, the objective function is strictly concave over each of these subspaces, so in each case Ĉ
maximizes the program over the subspace to which it belongs. By Lemma 14, moreover, the global

optimum C must also belong to SH or SL. Two cases therefore remain to consider .

Case A: t lies in Region I or II, so that Ĉ ∈ SH . If C ∈ SH as well, they must coincide. If

C ∈ SL then yH = y∗, µL = 0 and

UH − UL = yL∆θ ≤ ŷH∆θ = ÛH − ÛL. (D.26)

• Subcase A1. If the inequality is strict then

UH − ÛH < UL − ÛL. (D.27)

Note that this requires τH = 0, otherwise t = UH − ÛH < UL − ÛL ≤ t, a contradiction. Next,

subtracting from (D.15) its counterpart for Ĉ , and likewise for (D.16), we have:

qH

[
w(y∗) +BθH − 2UH + ÛH − t

]
+ µH = qH

[
w(ŷH) +BθH − ÛH − t

]
− µ̂L,

qL

[
w(yL) +BθL − 2UL + ÛL − t

]
− µH + ν − τL = qL

[
w(y∗) +BθL − ÛL − t

]
+ µ̂L + ν̂.

The first equation implies that w(y∗)−w(ŷH) ≤ 2(UH − ÛH), hence UL− ÛL > 0 by (D.27). Thus

UL > Ū, implying ν = 0. It then follows from the second equation above that w(yL)+BθL−2UL+

ÛL ≥ w(y∗) +BθL − ÛL, hence 2(UL − ÛL) ≤ w(yL)− w(y∗) ≤ 0, which contradicts UL > ÛL.

• Subcase A2. Equation (D.26) is therefore an equality, implying that yL = ŷH = y∗ = yH (and

ψ = 0). Thus UH − UL = yH∆θ and yL = y∗, implying that C ∈ SH , so it must coincide with Ĉ.
Note that Ĉ ∈ SH ∩ SL can only occur at t = t2.

Case B: t lies in Region III, so that Ĉ ∈ SL. If C ∈ SL as well, they must coincide. If C ∈ SH
then yL = y∗, µH = 0 and UH − UL = yH∆θ ≥ ŷL∆θ = ÛH − ÛL. Therefore:

UH − ÛH ≥ UL − ÛL = UL − Ū ≥ 0. (D.28)

Subtracting from (D.15) its counterpart for Ĉ , we now have:

qH

[
w(yH) +BθH − 2UH + ÛH − t

]
− µL − τH = qH

[
w(y∗) +BθH − ÛH − t

]
+ µ̂H ⇒

w(yH)− w(y∗) ≥ 2(UH − ÛH),

which together with (D.28) requires that UH = ÛH , UL = ÛL and yH = y∗ = ŷL, so that C = Ĉ.
Here again it must be that t = t2, which corresponds to the only intersection of SH and SL.
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